6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Crystal-array-assisted growth of a perovskite absorption layer for efficient and stable solar cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The PCA regularly distributing on the substrate served as templated crystals and induced a well-organized bottom-up crystallization process, which greatly improved the crystallinity of the perovskite film.

          Abstract

          The photovoltaic performance and stability of perovskite solar cells (PSCs) are closely related to the quality of the absorption layer. Further improving the crystallinity of perovskite films is of great significance for the commercial application of PSCs. Here, we introduce a perovskite crystal array (PCA) with regular distribution to assist the growth of the perovskite absorption layer. The PCA provides nuclei where the crystallization can commence without overcoming the critical Gibbs free energy for nucleation and induces a controllable bottom-up crystallization process under solvent annealing. As a result, a perovskite film with high crystallinity and reduced grain boundaries was obtained. The largest grain size was over 4 μm and the average grain size was over 3 μm. PSCs based on the perovskite film with the PCA achieved power conversion efficiencies of 25.1% (certified 24.3%) and 23.1% (certified 22.3%) with aperture areas of 0.0784 cm 2 and 1.0085 cm 2, respectively. The devices maintained 90% of their initial efficiency after operation at the maximum power point for 2000 hours under 1 sun illumination.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.

          Two organolead halide perovskite nanocrystals, CH(3)NH(3)PbBr(3) and CH(3)NH(3)PbI(3), were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO(2) films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH(3)NH(3)PbI(3)-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH(3)NH(3)PbBr(3)-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequential deposition as a route to high-performance perovskite-sensitized solar cells.

            Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films using a mixture of PbX2 and CH3NH3X in a common solvent. However, the uncontrolled precipitation of the perovskite produces large morphological variations, resulting in a wide spread of photovoltaic performance in the resulting devices, which hampers the prospects for practical applications. Here we describe a sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film. PbI2 is first introduced from solution into a nanoporous titanium dioxide film and subsequently transformed into the perovskite by exposing it to a solution of CH3NH3I. We find that the conversion occurs within the nanoporous host as soon as the two components come into contact, permitting much better control over the perovskite morphology than is possible with the previously employed route. Using this technique for the fabrication of solid-state mesoscopic solar cells greatly increases the reproducibility of their performance and allows us to achieve a power conversion efficiency of approximately 15 per cent (measured under standard AM1.5G test conditions on solar zenith angle, solar light intensity and cell temperature). This two-step method should provide new opportunities for the fabrication of solution-processed photovoltaic cells with unprecedented power conversion efficiencies and high stability equal to or even greater than those of today's best thin-film photovoltaic devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compositional engineering of perovskite materials for high-performance solar cells.

              Of the many materials and methodologies aimed at producing low-cost, efficient photovoltaic cells, inorganic-organic lead halide perovskite materials appear particularly promising for next-generation solar devices owing to their high power conversion efficiency. The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium lead halide materials. Here we combine the promising-owing to its comparatively narrow bandgap-but relatively unstable formamidinium lead iodide (FAPbI3) with methylammonium lead bromide (MAPbBr3) as the light-harvesting unit in a bilayer solar-cell architecture. We investigated phase stability, morphology of the perovskite layer, hysteresis in current-voltage characteristics, and overall performance as a function of chemical composition. Our results show that incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3 and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination of 100 milliwatts per square centimetre. These findings further emphasize the versatility and performance potential of inorganic-organic lead halide perovskite materials for photovoltaic applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                March 16 2022
                2022
                : 15
                : 3
                : 1078-1085
                Affiliations
                [1 ]State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
                [2 ]School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
                Article
                10.1039/D1EE02897A
                c3195f51-4461-44e3-88a5-fb1f661733dd
                © 2022

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article