3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface.

      Oncogene
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many cancers are dependent on inappropriate activation of epidermal growth factor receptor (EGFR), and drugs targeting this receptor can improve patient survival, although benefits are generally short-lived. We reveal a novel mechanism linking EGFR and the membrane-spanning, cancer-promoting protein CDCP1 (CUB domain-containing protein 1). Under basal conditions, cell surface CDCP1 constitutively internalizes and undergoes palmitoylation-dependent degradation by a mechanism in which it is palmitoylated in at least one of its four cytoplasmic cysteines. This mechanism is functional in vivo as CDCP1 is elevated and palmitoylated in high-grade serous ovarian tumors. Interestingly, activation of the EGFR system with EGF inhibits proteasome-mediated, palmitoylation-dependent degradation of CDCP1, promoting recycling of CDCP1 to the cell surface where it is available to mediate its procancer effects. We also show that mechanisms inducing relocalization of CDCP1 to the cell surface, including disruption of its palmitoylation and EGF treatment, promote cell migration. Our data provide the first evidence that the EGFR system can function to increase the lifespan of a protein and also promote its recycling to the cell surface. This information may be useful for understanding mechanisms of resistance to EGFR therapies and assist in the design of treatments for EGFR-dependent cancers.

          Related collections

          Author and article information

          Journal
          24681947
          10.1038/onc.2014.88

          Comments

          Comment on this article