7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting

      1 , 2 , 1 , 2 , 1 , 2 , 1 , 2
      Advanced Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: not found
          • Article: not found

          Electrochemical Photolysis of Water at a Semiconductor Electrode

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Solar water splitting cells.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.

              Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm(-2) per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoO(x), CoPi, CoFeO(x), NiO(x), NiCeO(x), NiCoO(x), NiCuO(x), NiFeO(x), and NiLaO(x). The oxygen-evolving activity of an electrodeposited IrO(x) catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm(-2) current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrO(x) was unstable under oxidative conditions in acidic solutions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                09359648
                July 2018
                July 2018
                May 11 2018
                : 30
                : 30
                : 1707502
                Affiliations
                [1 ]Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
                [2 ]Key Laboratory for Green Chemical Technology of Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
                Article
                10.1002/adma.201707502
                c1d91020-82b7-4a70-8410-0dfbbd2fb59e
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article