5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enhancing Water Oxidation of Ru Single Atoms via Oxygen-Coordination Bonding with NiFe Layered Double Hydroxide

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.

          A software package for the analysis of X-ray absorption spectroscopy (XAS) data is presented. This package is based on the IFEFFIT library of numerical and XAS algorithms and is written in the Perl programming language using the Perl/Tk graphics toolkit. The programs described here are: (i) ATHENA, a program for XAS data processing, (ii) ARTEMIS, a program for EXAFS data analysis using theoretical standards from FEFF and (iii) HEPHAESTUS, a collection of beamline utilities based on tables of atomic absorption data. These programs enable high-quality data analysis that is accessible to novices while still powerful enough to meet the demands of an expert practitioner. The programs run on all major computer platforms and are freely available under the terms of a free software license.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.

            Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm(-2) per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoO(x), CoPi, CoFeO(x), NiO(x), NiCeO(x), NiCoO(x), NiCuO(x), NiFeO(x), and NiLaO(x). The oxygen-evolving activity of an electrodeposited IrO(x) catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm(-2) current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrO(x) was unstable under oxidative conditions in acidic solutions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution

                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Catalysis
                ACS Catal.
                American Chemical Society (ACS)
                2155-5435
                2155-5435
                February 17 2023
                February 08 2023
                February 17 2023
                : 13
                : 4
                : 2771-2779
                Affiliations
                [1 ]Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
                [2 ]Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China
                [3 ]School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
                Article
                10.1021/acscatal.2c05624
                c1c1983c-c5f9-43cd-8cb7-7caaf3587426
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,379

                Cited by12

                Most referenced authors2,310