68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The selective serotonin reuptake inhibitor fluoxetine (FLX) is widely used to treat depression and anxiety disorders, but cellular mechanisms underlying the antidepressant effect of FLX remain largely unknown. The generally accepted effect of chronic FLX treatment is increased adult neurogenesis in the hippocampal dentate gyrus. It was recently demonstrated that FLX treatments can reverse the established neuronal maturation of granule cells in the hippocampal dentate gyrus and of gamma-aminobutyric acidergic (GABAergic) interneurons in the basolateral amygdala. However, it is not clear whether this dematuration effect of FLX occurs in other brain regions. Thus, in this study, we used immunohistological analysis to assess the effect of FLX treatment on GABAergic interneurons in the medial frontal cortex (mFC) and reticular thalamic nucleus (RTN).

          Results

          Immunofluorescence analysis for perineuronal nets (PNNs), which is a marker of neuronal maturation, and for parvalbumin, calretinin, and somatostatin, which are markers for specific GABAergic interneuron type, showed lower number of parvalbumin-positive (+) cells and PNN+/parvalbumin+ cells in the mFC of FLX-treated mice compared to vehicle-treated mice. However, FLX treatment had no effect on the number of cells expressing calretinin and somatostatin in the mFC. In the RTN, the number of PNN+ cells and parvalbumin+ cells was unaltered by FLX treatments. Furthermore, the number of total GABA+ cells and apoptotic cells in the mFC was similar between vehicle- and FLX-treated mice, suggesting that FLX treatment did not induce cell death in this region. Rather, our findings suggest that the decreased number of parvalbumin+ cells in the mFC was due to a decreased expression of parvalbumin proteins in the interneurons.

          Conclusions

          This study indicates that FLX decreases the levels of parvalbumin, a mature marker of fast-spiking interneurons, and PNNs in parvalbumin+ interneurons in the mFC, suggesting that FLX treatment induces a dematuration of this type of neurons. Induction of a juvenile-like state in fast-spiking inhibitory interneurons in these regions might be involved in the therapeutic mechanism of this antidepressant drug and/or some of its adverse effects.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Neurons in medial prefrontal cortex signal memory for fear extinction.

          Conditioned fear responses to a tone previously paired with a shock diminish if the tone is repeatedly presented without the shock, a process known as extinction. Since Pavlov it has been hypothesized that extinction does not erase conditioning, but forms a new memory. Destruction of the ventral medial prefrontal cortex, which consists of infralimbic and prelimbic cortices, blocks recall of fear extinction, indicating that medial prefrontal cortex might store long-term extinction memory. Here we show that infralimbic neurons recorded during fear conditioning and extinction fire to the tone only when rats are recalling extinction on the following day. Rats that froze the least showed the greatest increase in infralimbic tone responses. We also show that conditioned tones paired with brief electrical stimulation of infralimbic cortex elicit low freezing in rats that had not been extinguished. Thus, stimulation resembling extinction-induced infralimbic tone responses is able to simulate extinction memory. We suggest that consolidation of extinction learning potentiates infralimbic activity, which inhibits fear during subsequent encounters with fear stimuli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia.

            Deficits in cognitive control, a core disturbance of schizophrenia, appear to emerge from impaired prefrontal gamma oscillations. Cortical gamma oscillations require strong inhibitory inputs to pyramidal neurons from the parvalbumin basket cell (PVBC) class of GABAergic neurons. Recent findings indicate that schizophrenia is associated with multiple pre- and postsynaptic abnormalities in PVBCs, each of which weakens their inhibitory control of pyramidal cells. These findings suggest a new model of cortical dysfunction in schizophrenia in which PVBC inhibition is decreased to compensate for an upstream deficit in pyramidal cell excitation. This compensation is thought to rebalance cortical excitation and inhibition, but at a level insufficient to generate the gamma oscillation power required for high levels of cognitive control. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurobiology of emotion perception II: Implications for major psychiatric disorders.

              To date, there has been little investigation of the neurobiological basis of emotion processing abnormalities in psychiatric populations. We have previously discussed two neural systems: 1) a ventral system, including the amygdala, insula, ventral striatum, ventral anterior cingulate gyrus, and prefrontal cortex, for identification of the emotional significance of a stimulus, production of affective states, and automatic regulation of emotional responses; and 2) a dorsal system, including the hippocampus, dorsal anterior cingulate gyrus, and prefrontal cortex, for the effortful regulation of affective states and subsequent behavior. In this critical review, we have examined evidence from studies employing a variety of techniques for distinct patterns of structural and functional abnormalities in these neural systems in schizophrenia, bipolar disorder, and major depressive disorder. In each psychiatric disorder, the pattern of abnormalities may be associated with specific symptoms, including emotional flattening, anhedonia, and persecutory delusions in schizophrenia, prominent mood swings, emotional lability, and distractibility in bipolar disorder during depression and mania, and with depressed mood and anhedonia in major depressive disorder. We suggest that distinct patterns of structural and functional abnormalities in neural systems important for emotion processing are associated with specific symptoms of schizophrenia and bipolar and major depressive disorder.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Brain
                Mol Brain
                Molecular Brain
                BioMed Central
                1756-6606
                2013
                5 November 2013
                : 6
                : 43
                Affiliations
                [1 ]Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
                [2 ]Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
                [3 ]Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
                Article
                1756-6606-6-43
                10.1186/1756-6606-6-43
                4225860
                24228616
                c0f98e40-d6e4-46da-bd5b-47136fda2c52
                Copyright © 2013 Ohira et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 September 2013
                : 1 October 2013
                Categories
                Research

                Neurosciences
                antidepressant,calcium-binding protein,depression,emotion,extracellular matrix,gaba,interneuron,limbic system,parvalbumin,prelimbic cortex

                Comments

                Comment on this article