2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PANDAS: Prototype-based Novel Class Discovery and Detection

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Object detectors are typically trained once and for all on a fixed set of classes. However, this closed-world assumption is unrealistic in practice, as new classes will inevitably emerge after the detector is deployed in the wild. In this work, we look at ways to extend a detector trained for a set of base classes so it can i) spot the presence of novel classes, and ii) automatically enrich its repertoire to be able to detect those newly discovered classes together with the base ones. We propose PANDAS, a method for novel class discovery and detection. It discovers clusters representing novel classes from unlabeled data, and represents old and new classes with prototypes. During inference, a distance-based classifier uses these prototypes to assign a label to each detected object instance. The simplicity of our method makes it widely applicable. We experimentally demonstrate the effectiveness of PANDAS on the VOC 2012 and COCO-to-LVIS benchmarks. It performs favorably against the state of the art for this task while being computationally more affordable.

          Related collections

          Author and article information

          Journal
          27 February 2024
          Article
          2402.17420
          c0e42c1e-7e35-4ffe-ac3a-36a0f25aeeac

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.CV cs.AI

          Computer vision & Pattern recognition,Artificial intelligence
          Computer vision & Pattern recognition, Artificial intelligence

          Comments

          Comment on this article