18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The increasing rate of global mean sea-level rise during 1993–2014

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          ENSEMBLE EMPIRICAL MODE DECOMPOSITION: A NOISE-ASSISTED DATA ANALYSIS METHOD

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A reconciled estimate of ice-sheet mass balance.

            We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year.

              Assessments of Antarctic temperature change have emphasized the contrast between strong warming of the Antarctic Peninsula and slight cooling of the Antarctic continental interior in recent decades. This pattern of temperature change has been attributed to the increased strength of the circumpolar westerlies, largely in response to changes in stratospheric ozone. This picture, however, is substantially incomplete owing to the sparseness and short duration of the observations. Here we show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. West Antarctic warming exceeds 0.1 degrees C per decade over the past 50 years, and is strongest in winter and spring. Although this is partly offset by autumn cooling in East Antarctica, the continent-wide average near-surface temperature trend is positive. Simulations using a general circulation model reproduce the essential features of the spatial pattern and the long-term trend, and we suggest that neither can be attributed directly to increases in the strength of the westerlies. Instead, regional changes in atmospheric circulation and associated changes in sea surface temperature and sea ice are required to explain the enhanced warming in West Antarctica.
                Bookmark

                Author and article information

                Journal
                Nature Climate Change
                Nature Climate change
                Springer Nature
                1758-678X
                1758-6798
                June 26 2017
                June 26 2017
                : 7
                : 7
                : 492-495
                Article
                10.1038/nclimate3325
                c0cd15ca-bdea-4b74-8fd1-d554e5b9d071
                © 2017
                History

                Comments

                Comment on this article