14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      So close: remaining challenges to eradicating polio

      editorial
      BMC Medicine
      BioMed Central
      Elimination, Eradication, Polio, Poliomyelitis, Poliovirus

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Global Polio Eradication Initiative, launched in 1988, is close to achieving its goal. In 2015, reported cases of wild poliovirus were limited to just two countries – Afghanistan and Pakistan. Africa has been polio-free for more than 18 months. Remaining barriers to global eradication include insecurity in areas such as Northwest Pakistan and Eastern and Southern Afghanistan, where polio cases continue to be reported. Hostility to vaccination is either based on extreme ideologies, such as in Pakistan, vaccination fatigue by parents whose children have received more than 15 doses, and misunderstandings about the vaccine’s safety and effectiveness such as in Ukraine. A further challenge is continued circulation of vaccine-derived poliovirus in populations with low immunity, with 28 cases reported in 2015 in countries as diverse as Madagascar, Ukraine, Laos, and Myanmar. This paper summarizes the current epidemiology of wild and vaccine-derived poliovirus, and describes the remaining challenges to eradication and innovative approaches being taken to overcome them.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Environmental surveillance for polioviruses in the Global Polio Eradication Initiative.

          This article summarizes the status of environmental surveillance (ES) used by the Global Polio Eradication Initiative, provides the rationale for ES, gives examples of ES methods and findings, and summarizes how these data are used to achieve poliovirus eradication. ES complements clinical acute flaccid paralysis (AFP) surveillance for possible polio cases. ES detects poliovirus circulation in environmental sewage and is used to monitor transmission in communities. If detected, the genetic sequences of polioviruses isolated from ES are compared with those of isolates from clinical cases to evaluate the relationships among viruses. To evaluate poliovirus transmission, ES programs must be developed in a manner that is sensitive, with sufficiently frequent sampling, appropriate isolation methods, and specifically targeted sampling sites in locations at highest risk for poliovirus transmission. After poliovirus ceased to be detected in human cases, ES documented the absence of endemic WPV transmission and detected imported WPV. ES provides valuable information, particularly in high-density populations where AFP surveillance is of poor quality, persistent virus circulation is suspected, or frequent virus reintroduction is perceived. Given the benefits of ES, GPEI plans to continue and expand ES as part of its strategic plan and as a supplement to AFP surveillance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunogenicity of bivalent types 1 and 3 oral poliovirus vaccine: a randomised, double-blind, controlled trial.

            Poliovirus types 1 and 3 co-circulate in poliomyelitis-endemic countries. We aimed to assess the immunogenicity of a novel bivalent types 1 and 3 oral poliovirus vaccine (bOPV). We did a randomised, double-blind, controlled trial to assess the superiority of monovalent type 2 OPV (mOPV2), mOPV3, or bOPV over trivalent OPV (tOPV), and the non-inferiority of bivalent vaccine compared with mOPV1 and mOPV3. The study was done at three centres in India between Aug 6, 2008, and Dec 26, 2008. Random allocation was done by permuted blocks of ten. The primary outcome was seroconversion after one monovalent or bivalent vaccine dose compared with a dose of trivalent vaccine at birth. The secondary endpoints were seroconversion after two vaccine doses compared with after two trivalent vaccine doses and cumulative two-dose seroconversion. Parents or guardians and study investigators were masked to treatment allocation. Because of multiple comparisons, we defined p≤0·01 as statistically significant. This trial is registered with Current Controlled Trials, ISRCTN 64725429. 900 newborn babies were randomly assigned to one of five vaccine groups (about 180 patients per group); of these 70 (8%) discontinued, leaving 830 (92%) for analysis. After the first dose, seroconversion to poliovirus type 1 was 20% for both mOPV1 (33 of 168) and bOPV (32 of 159) compared with 15% for tOPV (25 of 168; p>0·01), to poliovirus type 2 was 21% (35 of 170) for mOPV2 compared with 25% (42 of 168) for tOPV (p>0·01), and to poliovirus type 3 was 12% (20 of 165) for mOPV3 and 7% (11 of 159) for bOPV compared with 4% (7 of 168) for tOPV (mOPV3 vs tOPV p=0·01; bOPV vs tOPV; p>0·01). Cumulative two-dose seroconversion to poliovirus type 1 was 90% (151 of 168) for mOPV1 and 86% (136 of 159) for bOPV compared with 63% (106 of 168) for tOPV (p 0·01), and to poliovirus type 3 was 84% (138 of 165) for mOPV3 and 74% (117 of 159) for bOPV compared with 52% (87 of 168) for tOPV (p<0·0001). The vaccines were well tolerated. 19 serious adverse events occurred, including one death; however, these events were not attributed to the trial interventions. The findings show the superiority of bOPV compared with tOPV, and the non-inferiority of bOPV compared with mOPV1 and mOPV3. GAVI Alliance, World Health Organization, and Panacea Biotec. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating vaccine-derived polioviruses: current state of knowledge.

              Within the past 4 years, poliomyelitis outbreaks associated with circulating vaccine-derived polioviruses (cVDPVs) have occurred in Hispaniola (2000-01), the Philippines (2001), and Madagascar (2001-02). Retrospective studies have also detected the circulation of endemic cVDPV in Egypt (1988-93) and the likely localized spread of oral poliovirus vaccine (OPV)-derived virus in Belarus (1965-66). Gaps in OPV coverage and the previous eradication of the corresponding serotype of indigenous wild poliovirus were the critical risk factors for all cVDPV outbreaks. The cVDPV outbreaks were stopped by mass immunization campaigns using OPV. To increase sensitivity for detecting vaccine-derived polioviruses (VDPVs), in 2001 the Global Polio Laboratory Network implemented additional testing requirements for all poliovirus isolates under investigation. This approach quickly led to the recognition of the Philippines and Madagascar cVDPV outbreaks, but of no other current outbreaks. The potential risk of cVDPV emergence has increased dramatically in recent years as wild poliovirus circulation has ceased in most of the world. The risk appears highest for the type 2 OPV strain because of its greater tendency to spread to contacts. The emergence of cVDPVs underscores the critical importance of eliminating the last pockets of wild poliovirus circulation, maintaining universally high levels of polio vaccine coverage, stopping OPV use as soon as it is safely possible to do so, and continuing sensitive poliovirus surveillance into the foreseeable future. Particular attention must be given to areas where the risks for wild poliovirus circulation have been highest, and where the highest rates of polio vaccine coverage must be maintained to suppress cVDPV emergence.
                Bookmark

                Author and article information

                Contributors
                toole@burnet.edu.au
                Journal
                BMC Med
                BMC Med
                BMC Medicine
                BioMed Central (London )
                1741-7015
                14 March 2016
                14 March 2016
                2016
                : 14
                : 43
                Affiliations
                Burnet Institute, 85 Commercial Rd, Melbourne, 3004 Australia
                Article
                594
                10.1186/s12916-016-0594-6
                4790056
                26971523
                bff16954-286a-4bae-92d0-521f160f5d59
                © Toole. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 March 2016
                : 2 March 2016
                Categories
                Commentary
                Custom metadata
                © The Author(s) 2016

                Medicine
                elimination,eradication,polio,poliomyelitis,poliovirus
                Medicine
                elimination, eradication, polio, poliomyelitis, poliovirus

                Comments

                Comment on this article