21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Morphological, biological and molecular characterization of three strains of Trypanosoma cruzi Chagas, 1909 (Kinetoplastida, Trypanosomatidae) isolated from Triatoma sordida (Stal) 1859 (Hemiptera, Reduviidae) and a domestic cat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          A study was conducted of the biological, morphological and molecular characters of 3 strains of Trypanosoma cruzi (SI 5, SI 8 and SIGR 3) isolated from specimens of Triatoma sordida collected in Santo Inácio and a domestic cat. In order to carry out the study, the following parameters were evaluated: pre-patent period, parasitaemia curves, morphology of the parasites, mortality rates, histopathological lesions and molecular typing. The strains presented variable pre-patent periods, low parasitaemia and no animal mortality. The morphological study of trypomastigotes showed a predominance of intermediate-width and short-length forms, as well as low nuclear index. Epimastigotes presented a low nuclear index, intermediate-width forms in strains SI 5 and SI 8, and large-width forms in SIGR 3. A shorter length could be noted in strains SI 8 and SIGR 3, whereas SI 5 displayed an intermediate length. The histopathological study did not detect amastigote nests in tissues. The amplification of the divergent domain of 24S α rRNA, HSP60 and GPI genes of strains SI 5, SI 8 and SIGR 3 classified the 3 strains into Group II. Biological parameters made it possible to classify the strains isolated in Santo Inácio (BA) into Biodeme III, Zymodeme 1 and Group II of T. cruzi.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          DNA markers define two major phylogenetic lineages of Trypanosoma cruzi.

          R. Souto (1996)
          Parasitic protozoa within the taxon Trypanosoma cruzi are considered to be derived from multiple clonal lineages, and show broad genetic diversity as a result of propagation with little or no genetic exchange. We have analyzed a wide sample of T. cruzi isolates from vertebrate and invertebrate hosts by PCR amplification of a ribosomal RNA gene sequence, a mini-exon gene sequence and random amplified polymorphic DNA (RAPD). Amplification of the distinct rDNA and mini-exon gene sequences indicated a dimorphism within both of the tandemly-repeated genes: 125 or 110 bp products for rDNA and 300 or 350 bp products for the mini-exon. Within individual isolates, one of three associations was observed: the 125 bp rDNA product with the 300 bp mini-exon product (defined as group 1), the 110 bp rDNA product with the 350 bp mini-exon product (defined as group 2) and the presence of both rDNA amplification products with the mini-exon group 1 product (group 1/2). The RAPD analysis showed variability between individual isolates, however, tree analysis clearly indicated the presence of two major branches. Interestingly, the rDNA/mini-exon group 2 isolates correlated precisely with one branch of the RAPD-derived tree; group 1 and group 1/2 isolates correlated with the other branch. Our studies show a clear division of T. cruzi into two major lineages presenting a high phylogenetic divergence. Hypotheses are discussed to explain the origin of the two lineages as well as isolates that are hybrid for group 1 and 2 rDNA markers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two hybridization events define the population structure of Trypanosoma cruzi.

            Genetic variation in Trypanosoma cruzi is likely a key determinant in transmission and pathogenesis of Chagas disease. We have examined nine loci as markers for the extant T. cruzi strains. Four distinct alleles were found for each locus, corresponding to the sequence classes present in the homozygous discrete typing units (DTUs) I, IIa, IIb, and IIc. The alleles in DTUs IIa and IIc showed a spectrum of polymorphism ranging from DTU I-like to DTU IIb-like, in addition to DTU-specific sequence variation. DTUs IId and IIe were indistinguishable, showing DTU homozygosity at one locus and heterozygosity with DTU IIb and IIc allelic sequences at eight loci. Recombination between the DTU IIb and IIc alleles is evidenced from mosaic polymorphisms. These data imply that two discrete hybridization events resulted in the formation of the current DTUs. We propose a model in which a fusion between ancestral DTU I and IIb strains gave rise to a heterozygous hybrid that homogenized its genome to become the homozygous progenitor of DTUs IIa and IIc. The second hybridization between DTU IIb and IIc strains that generated DTUs IId and IIe resulted in extensive heterozygosity with subsequent recombination of parental genotypes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chagas' disease and Chagas' syndromes: the pathology of American trypanosomiasis.

              F Köberle (1967)
                Bookmark

                Author and article information

                Journal
                Parasitology
                PAR
                Parasitology
                Cambridge University Press (Cambridge, UK )
                0031-1820
                1469-8161
                January 2012
                January 2012
                : 139
                : 1
                : 37-44
                Affiliations
                [1 ]Instituto de Biologia Universidade Estadual de Campinas, Unicamp – Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato, 255 Campinas SP, CEP 13083-862, Brasil
                [2 ]Universidade Estadual Júlio de Mesquita Filho, UNESP Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Brasil
                [3 ]Secretaria de Saúde do Estado da Bahia, SESAB, Brasil
                Author notes
                [* ]Corresponding author: Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara/Jau, Km1, CEP: 14801-902, Araraquara, SP, Brasil. Tel: +55 16 33016943. Fax: +55 16 33016940. E-mail: rosaja@ 123456fcfar.unesp.br
                Article
                S0031182011001697 00169
                10.1017/S0031182011001697
                3252559
                22217619
                bfd92869-eec7-4532-8df1-2774172ffe06
                Copyright © Cambridge University Press 2012. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence <http://creativecommons.org/licenses/by-nc-sa/2.5/>. The written permission of Cambridge University Press must be obtained for commercial re-use.

                The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence < http://creativecommons.org/licenses/by-nc-sa/2.5/>. The written permission of Cambridge University Press must be obtained for commercial re-use.

                History
                : 06 May 2011
                : 06 July 2011
                : 12 August 2011
                : 22 August 2011
                Page count
                Pages: 8
                Categories
                Research Article

                Parasitology
                characterization,chagas’ disease,biology,trypanosoma cruzi,lineage,dtus,dna,strains,histopathological,experimental infection

                Comments

                Comment on this article