16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rheumatoid Arthritis-Associated Mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology characterized by immune-mediated damage of synovial joints and antibodies to citrullinated antigens. Periodontal disease, a bacterial-induced inflammatory disease of the periodontium, is commonly observed in RA and has implicated periodontal pathogens as potential triggers of the disease. In particular, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans have gained interest as microbial candidates involved in RA pathogenesis by inducing the production of citrullinated antigens. Here, we will discuss the clinical and mechanistic evidence surrounding the role of these periodontal bacteria in RA pathogenesis, which highlights a key area for the treatment and preventive interventions in RA.

          Related collections

          Most cited references197

          • Record: found
          • Abstract: found
          • Article: not found

          Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response.

          Recent studies have uncovered novel mechanisms underlying the breakdown of periodontal host-microbe homeostasis, which can precipitate dysbiosis and periodontitis in susceptible hosts. Dysbiotic microbial communities of keystone pathogens and pathobionts are thought to exhibit synergistic virulence whereby not only can they endure the host response but can also thrive by exploiting tissue-destructive inflammation, which fuels a self-feeding cycle of escalating dysbiosis and inflammatory bone loss, potentially leading to tooth loss and systemic complications. Here, I discuss new paradigms in our understanding of periodontitis, which may shed light into other polymicrobial inflammatory disorders. In addition, I highlight gaps in knowledge required for an integrated picture of the interplay between microbes and innate and adaptive immune elements that initiate and propagate chronic periodontal inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies.

            Only a few autoantibodies that are more or less specific for RA have been described so far. The rheumatoid factor most often tested for is not very specific for RA, while the more specific antiperinuclear factor for several reasons is not routinely used as a serological parameter. Here we show that autoantibodies reactive with synthetic peptides containing the unusual amino acid citrulline, a posttranslationally modified arginine residue, are specifically present in the sera of RA patients. Using several citrulline-containing peptide variants in ELISA, antibodies could be detected in 76% of RA sera with a specificity of 96%. Sera showed a remarkable variety in the reactivity pattern towards different citrulline-containing peptides. Affinity-purified antibodies were shown to be positive in the immunofluorescence-based antiperinuclear factor test, and in the so-called antikeratin antibody test, and were reactive towards filaggrin extracted from human epidermis. The specific nature of these antibodies and the presence of these antibodies early in disease, even before other disease manifestations occur, are indicative for a possible role of citrulline-containing epitopes in the pathogenesis of RA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RTX proteins: a highly diverse family secreted by a common mechanism

              Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                26 August 2019
                September 2019
                : 8
                : 9
                : 1309
                Affiliations
                Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
                Author notes
                [* ]Correspondence: andrade@ 123456jhmi.edu ; Tel.: +1-410-550-8665; Fax: +1-410-550-2072
                Author information
                https://orcid.org/0000-0001-9730-1851
                Article
                jcm-08-01309
                10.3390/jcm8091309
                6780899
                31454946
                bf8f1297-6c6c-4f1d-abe2-08e4452720c4
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 July 2019
                : 21 August 2019
                Categories
                Review

                rheumatoid arthritis,porphyromonas gingivalis,aggregatibacter actinomycetemcomitans,periodontitis,periodontal disease,citrullination,peptidylarginine deiminase,acpa,anti-ccp

                Comments

                Comment on this article