35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lowered testosterone in male obesity: mechanisms, morbidity and management

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With increasing modernization and urbanization of Asia, much of the future focus of the obesity epidemic will be in the Asian region. Low testosterone levels are frequently encountered in obese men who do not otherwise have a recognizable hypothalamic-pituitary-testicular (HPT) axis pathology. Moderate obesity predominantly decreases total testosterone due to insulin resistance-associated reductions in sex hormone binding globulin. More severe obesity is additionally associated with reductions in free testosterone levels due to suppression of the HPT axis. Low testosterone by itself leads to increasing adiposity, creating a self-perpetuating cycle of metabolic complications. Obesity-associated hypotestosteronemia is a functional, non-permanent state, which can be reversible, but this requires substantial weight loss. While testosterone treatment can lead to moderate reductions in fat mass, obesity by itself, in the absence of symptomatic androgen deficiency, is not an established indication for testosterone therapy. Testosterone therapy may lead to a worsening of untreated sleep apnea and compromise fertility. Whether testosterone therapy augments diet- and exercise-induced weight loss requires evaluation in adequately designed randomized controlled clinical trials.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Muscles, exercise and obesity: skeletal muscle as a secretory organ.

          During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines. The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal L cells and pancreatic islets. Other myokines include the osteogenic factors IGF-1 and FGF-2; FSTL-1, which improves the endothelial function of the vascular system; and the PGC-1α-dependent myokine irisin, which drives brown-fat-like development. Studies in the past few years suggest the existence of yet unidentified factors, secreted from muscle cells, which may influence cancer cell growth and pancreas function. Many proteins produced by skeletal muscle are dependent upon contraction; therefore, physical inactivity probably leads to an altered myokine response, which could provide a potential mechanism for the association between sedentary behaviour and many chronic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adverse events associated with testosterone administration.

            Testosterone supplementation has been shown to increase muscle mass and strength in healthy older men. The safety and efficacy of testosterone treatment in older men who have limitations in mobility have not been studied. Community-dwelling men, 65 years of age or older, with limitations in mobility and a total serum testosterone level of 100 to 350 ng per deciliter (3.5 to 12.1 nmol per liter) or a free serum testosterone level of less than 50 pg per milliliter (173 pmol per liter) were randomly assigned to receive placebo gel or testosterone gel, to be applied daily for 6 months. Adverse events were categorized with the use of the Medical Dictionary for Regulatory Activities classification. The data and safety monitoring board recommended that the trial be discontinued early because there was a significantly higher rate of adverse cardiovascular events in the testosterone group than in the placebo group. A total of 209 men (mean age, 74 years) were enrolled at the time the trial was terminated. At baseline, there was a high prevalence of hypertension, diabetes, hyperlipidemia, and obesity among the participants. During the course of the study, the testosterone group had higher rates of cardiac, respiratory, and dermatologic events than did the placebo group. A total of 23 subjects in the testosterone group, as compared with 5 in the placebo group, had cardiovascular-related adverse events. The relative risk of a cardiovascular-related adverse event remained constant throughout the 6-month treatment period. As compared with the placebo group, the testosterone group had significantly greater improvements in leg-press and chest-press strength and in stair climbing while carrying a load. In this population of older men with limitations in mobility and a high prevalence of chronic disease, the application of a testosterone gel was associated with an increased risk of cardiovascular adverse events. The small size of the trial and the unique population prevent broader inferences from being made about the safety of testosterone therapy. (ClinicalTrials.gov number, NCT00240981.) 2010 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predictors of skeletal muscle mass in elderly men and women.

              Elderly men and women lose muscle mass and strength with increasing age. Decreased physical activity, hormones, malnutrition and chronic disease have been identified as factors contributing to this loss. There are few data, however, for their multivariate associations with muscle mass and strength. This study analyzes these associations in a cross-sectional sample of elderly people from the New Mexico Aging Process Study. Data collected in 1994 for 121 male and 180 female volunteers aged 65-97 years of age enrolled in The New Mexico Aging Process Study were analyzed. Body composition was measured using dual energy X-ray absorptiometry; dietary intake from 3 day food records; usual physical activity by questionnaire; health status from annual physical examinations; and serum testosterone, estrone, sex-hormone binding globulin (SHBG), and insulin-like growth factor (IGF1) from radioimmunoassays of fasting blood samples. Statistical analyses included partial correlation and stepwise multiple regression. The muscle mass and strength (adjusted for knee height) decreased with increasing age in both sexes. The muscle mass was significantly associated with serum free-testosterone, physical activity, cardiovascular disease, and IGF1 in the men. In the women, the muscle mass was significantly associated with total fat mass and physical activity. Age was not associated significantly with muscle mass after controlling for these variables. Grip strength was associated with age independent of muscle mass in both sexes. Estrogen (endogenous and exogenous) was not associated with muscle mass or strength in women. Age-related loss of muscle mass and strength occurs in relatively healthy, well-nourished elderly men and women and has a multifactorial basis. Sex hormone status is an important factor in men but not in women. Physical activity is an important predictor of muscle mass in both sexes.
                Bookmark

                Author and article information

                Journal
                Asian J Androl
                Asian J. Androl
                AJA
                Asian Journal of Andrology
                Medknow Publications & Media Pvt Ltd (India )
                1008-682X
                1745-7262
                Mar-Apr 2014
                20 January 2014
                : 16
                : 2
                : 223-231
                Affiliations
                [1 ]Department of Medicine Austin Health, University of Melbourne, Melbourne, Victoria, Australia
                [2 ]Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia
                Author notes
                Correspondence: Prof. M Grossmann ( mathisg@ 123456unimelb.edu.au )
                Article
                AJA-16-223
                10.4103/1008-682X.122365
                3955331
                24407187
                bed5c91e-96df-4427-93f0-1523251d549e
                Copyright: © Asian Journal of Andrology

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 05 June 2013
                : 12 August 2013
                : 23 August 2013
                Categories
                Invited Review

                androgens,hypogonadism,obesity,testosterone,weight loss
                androgens, hypogonadism, obesity, testosterone, weight loss

                Comments

                Comment on this article