14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications

      , , , , , , ,
      Global Change Biology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Ensemble Kalman Filter: theoretical formulation and practical implementation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems.

              Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon uptake is therefore limiting the extent of atmospheric and climatic change, but its long-term nature remains uncertain. Here we provide an overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems. Atmospheric carbon dioxide and oxygen data confirm that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s. This recent sink can be largely attributed to northern extratropical areas, and is roughly split between North America and Eurasia. Tropical land areas, however, were approximately in balance with respect to carbon exchange, implying a carbon sink that offset emissions due to tropical deforestation. The evolution of the terrestrial carbon sink is largely the result of changes in land use over time, such as regrowth on abandoned agricultural land and fire prevention, in addition to responses to environmental changes, such as longer growing seasons, and fertilization by carbon dioxide and nitrogen. Nevertheless, there remain considerable uncertainties as to the magnitude of the sink in different regions and the contribution of different processes.
                Bookmark

                Author and article information

                Journal
                Global Change Biology
                Global Change Biol
                Wiley-Blackwell
                1354-1013
                1365-2486
                March 2005
                March 2005
                : 11
                : 3
                : 378-397
                Article
                10.1111/j.1365-2486.2005.00917.x
                bcc7569b-6d32-4544-959e-0bb4608bd3c5
                © 2005

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article