2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of factors influencing the efficacy of vagus nerve stimulation for the treatment of drug-resistant epilepsy in children and prediction model for efficacy evaluation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Vagus nerve stimulation (VNS) has been widely used in the treatment of drug-resistant epilepsy (DRE) in children. We aimed to explore the efficacy and safety of VNS, focusing on factors that can influence the efficacy of VNS, and construct a prediction model for the efficacy of VNS in the treatment of DRE children.

          Methods

          Retrospectively analyzed 45 DRE children who underwent VNS at Qilu Hospital of Shandong University from June 2016 to November 2022. A ≥50% reduction in seizure frequency was defined as responder, logistic regression analyses were performed to analyze factors affecting the efficacy of VNS, and a predictive model was constructed. The predictive model was evaluated by receiver operating characteristic curve (ROC), calibration curves, and decision curve analyses (DCA).

          Results

          A total of 45 DRE children were included in this study, and the frequency of seizures was significantly reduced after VNS treatment, with 25 responders (55.6%), of whom 6 (13.3%) achieved seizure freedom. There was a significant improvement in the Quality of Life in Childhood Epilepsy Questionnaire (15.5%) and Seizure Severity Score (46.2%). 16 potential factors affecting the efficacy of VNS were included, and three statistically significant positive predictors were ultimately screened: shorter seizure duration, focal seizure, and absence of intellectual disability. We developed a nomogram for predicting the efficacy of VNS in the treatment of DRE children. The ROC curve confirmed that the predictive model has good diagnostic performance (AUC = 0.864, P < 0.05), and the nomogram can be further validated by bootstrapping for 1,000 repetitions, with a C-index of 0.837. Besides, this model showed good fitting and calibration and positive net benefits in decision curve analysis.

          Conclusion

          VNS is a safe and effective treatment for DRE children. We developed a predictive nomogram for the efficacy of VNS, which provides a basis for more accurate selection of VNS patients.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology

          The International League Against Epilepsy (ILAE) Classification of the Epilepsies has been updated to reflect our gain in understanding of the epilepsies and their underlying mechanisms following the major scientific advances that have taken place since the last ratified classification in 1989. As a critical tool for the practicing clinician, epilepsy classification must be relevant and dynamic to changes in thinking, yet robust and translatable to all areas of the globe. Its primary purpose is for diagnosis of patients, but it is also critical for epilepsy research, development of antiepileptic therapies, and communication around the world. The new classification originates from a draft document submitted for public comments in 2013, which was revised to incorporate extensive feedback from the international epilepsy community over several rounds of consultation. It presents three levels, starting with seizure type, where it assumes that the patient is having epileptic seizures as defined by the new 2017 ILAE Seizure Classification. After diagnosis of the seizure type, the next step is diagnosis of epilepsy type, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and also an unknown epilepsy group. The third level is that of epilepsy syndrome, where a specific syndromic diagnosis can be made. The new classification incorporates etiology along each stage, emphasizing the need to consider etiology at each step of diagnosis, as it often carries significant treatment implications. Etiology is broken into six subgroups, selected because of their potential therapeutic consequences. New terminology is introduced such as developmental and epileptic encephalopathy. The term benign is replaced by the terms self-limited and pharmacoresponsive, to be used where appropriate. It is hoped that this new framework will assist in improving epilepsy care and research in the 21st century.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies.

            To improve patient care and facilitate clinical research, the International League Against Epilepsy (ILAE) appointed a Task Force to formulate a consensus definition of drug resistant epilepsy. The overall framework of the definition has two "hierarchical" levels: Level 1 provides a general scheme to categorize response to each therapeutic intervention, including a minimum dataset of knowledge about the intervention that would be needed; Level 2 provides a core definition of drug resistant epilepsy using a set of essential criteria based on the categorization of response (from Level 1) to trials of antiepileptic drugs. It is proposed as a testable hypothesis that drug resistant epilepsy is defined as failure of adequate trials of two tolerated, appropriately chosen and used antiepileptic drug schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom. This definition can be further refined when new evidence emerges. The rationale behind the definition and the principles governing its proper use are discussed, and examples to illustrate its application in clinical practice are provided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epilepsy in adults

              Epilepsy is one of the most common serious brain conditions, affecting over 70 million people worldwide. Its incidence has a bimodal distribution with the highest risk in infants and older age groups. Progress in genomic technology is exposing the complex genetic architecture of the common types of epilepsy, and is driving a paradigm shift. Epilepsy is a symptom complex with multiple risk factors and a strong genetic predisposition rather than a condition with a single expression and cause. These advances have resulted in the new classification of epileptic seizures and epilepsies. A detailed clinical history and a reliable eyewitness account of a seizure are the cornerstones of the diagnosis. Ancillary investigations can help to determine cause and prognosis. Advances in brain imaging are helping to identify the structural and functional causes and consequences of the epilepsies. Comorbidities are increasingly recognised as important aetiological and prognostic markers. Antiseizure medication might suppress seizures in up to two-thirds of all individuals but do not alter long-term prognosis. Epilepsy surgery is the most effective way to achieve long-term seizure freedom in selected individuals with drug-resistant focal epilepsy, but it is probably not used enough. With improved understanding of the gradual development of epilepsy, epigenetic determinants, and pharmacogenomics comes the hope for better, disease-modifying, or even curative, pharmacological and non-pharmacological treatment strategies. Other developments are clinical implementation of seizure detection devices and new neuromodulation techniques, including responsive neural stimulation.
                Bookmark

                Author and article information

                Contributors
                URI : http://loop.frontiersin.org/people/2545595/overviewRole: Role: Role:
                URI : http://loop.frontiersin.org/people/1897404/overviewRole: Role: Role:
                Role: Role:
                Role: Role:
                Role: Role:
                URI : http://loop.frontiersin.org/people/1418854/overviewRole: Role: Role:
                Role: Role: Role:
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                14 February 2024
                2024
                : 15
                : 1321245
                Affiliations
                [1] 1Department of Pediatrics, Qilu Hospital of Shandong University, Jinan , Shandong, China
                [2] 2Cheeloo College of Medicine, Shandong University, Jinan , Shandong, China
                [3] 3Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan , Shandong, China
                Author notes

                Edited by: Flavio Giordano, University of Florence, Italy

                Reviewed by: Elena Pavlidis, Central Hospital of Bolzano, Italy

                Lixin Cai, Peking University, China

                *Correspondence: Baomin Li 198962000693@ 123456sdu.edu.cn

                †These authors share first authorship

                Article
                10.3389/fneur.2024.1321245
                10899677
                38419715
                bcab069e-9225-4fac-a7a1-f0eb9ed5ab03
                Copyright © 2024 Su, Chang, Li, Ding, Zhao, Li and Li.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 October 2023
                : 29 January 2024
                Page count
                Figures: 4, Tables: 4, Equations: 0, References: 50, Pages: 12, Words: 7251
                Funding
                The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This study was supported by the Foundation of the National Key Research and Development Program of China (No. 2016YFC1306202).
                Categories
                Neurology
                Original Research
                Custom metadata
                Pediatric Neurology

                Neurology
                vagus nerve stimulation,drug-resistant epilepsy,children,predictor,prediction model
                Neurology
                vagus nerve stimulation, drug-resistant epilepsy, children, predictor, prediction model

                Comments

                Comment on this article