2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatial Dynamics and Fine-Scale Vertical Behaviour of Immature Eastern Australasian White Sharks (Carcharodon carcharias)

      , , ,
      Biology
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Knowledge of the 3-dimensional space use of large marine predators is central to our understanding of ecosystem dynamics and for the development of management recommendations. Horizontal movements of white sharks, Carcharodon carcharias, in eastern Australian and New Zealand waters have been relatively well studied, yet vertical habitat use is less well understood. We dual-tagged 27 immature white sharks with Pop-Up Satellite Archival Transmitting (PSAT) and acoustic tags in New South Wales coastal shelf waters. In addition, 19 of these individuals were also fitted with Smart Position or Temperature Transmitting (SPOT) tags. PSATs of 12 sharks provided useable data; four tags were recovered, providing highly detailed archival data recorded at 3-s intervals. Horizontal movements ranged from southern Queensland to southern Tasmania and New Zealand. Sharks made extensive use of the water column (0–632 m) and experienced a broad range of temperatures (7.8–28.9 °C). Archival records revealed pronounced diel-patterns in distinct fine-scale oscillatory behaviour, with sharks occupying relatively constant depths during the day and exhibiting pronounced yo-yo diving behaviour (vertical zig-zag swimming through the water column) during the night. Our findings provide valuable new insights into the 3-dimensional space use of Eastern Australasian (EA) white sharks and contribute to the growing body on the general ecology of immature white sharks.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          A movement ecology paradigm for unifying organismal movement research.

          Movement of individual organisms is fundamental to life, quilting our planet in a rich tapestry of phenomena with diverse implications for ecosystems and humans. Movement research is both plentiful and insightful, and recent methodological advances facilitate obtaining a detailed view of individual movement. Yet, we lack a general unifying paradigm, derived from first principles, which can place movement studies within a common context and advance the development of a mature scientific discipline. This introductory article to the Movement Ecology Special Feature proposes a paradigm that integrates conceptual, theoretical, methodological, and empirical frameworks for studying movement of all organisms, from microbes to trees to elephants. We introduce a conceptual framework depicting the interplay among four basic mechanistic components of organismal movement: the internal state (why move?), motion (how to move?), and navigation (when and where to move?) capacities of the individual and the external factors affecting movement. We demonstrate how the proposed framework aids the study of various taxa and movement types; promotes the formulation of hypotheses about movement; and complements existing biomechanical, cognitive, random, and optimality paradigms of movement. The proposed framework integrates eclectic research on movement into a structured paradigm and aims at providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes. "Now we must consider in general the common reason for moving with any movement whatever." (Aristotle, De Motu Animalium, 4th century B.C.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transoceanic migration, spatial dynamics, and population linkages of white sharks.

            The large-scale spatial dynamics and population structure of marine top predators are poorly known. We present electronic tag and photographic identification data showing a complex suite of behavioral patterns in white sharks. These include coastal return migrations and the fastest known transoceanic return migration among swimming fauna, which provide direct evidence of a link between widely separated populations in South Africa and Australia. Transoceanic return migration involved a return to the original capture location, dives to depths of 980 meters, and the tolerance of water temperatures as low as 3.4 degrees C. These findings contradict previous ideas that female white sharks do not make transoceanic migrations, and they suggest natal homing behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Philopatry and migration of Pacific white sharks.

              Advances in electronic tagging and genetic research are making it possible to discern population structure for pelagic marine predators once thought to be panmictic. However, reconciling migration patterns and gene flow to define the resolution of discrete population management units remains a major challenge, and a vital conservation priority for threatened species such as oceanic sharks. Many such species have been flagged for international protection, yet effective population assessments and management actions are hindered by lack of knowledge about the geographical extent and size of distinct populations. Combining satellite tagging, passive acoustic monitoring and genetics, we reveal how eastern Pacific white sharks (Carcharodon carcharias) adhere to a highly predictable migratory cycle. Individuals persistently return to the same network of coastal hotspots following distant oceanic migrations and comprise a population genetically distinct from previously identified phylogenetic clades. We hypothesize that this strong homing behaviour has maintained the separation of a northeastern Pacific population following a historical introduction from Australia/New Zealand migrants during the Late Pleistocene. Concordance between contemporary movement and genetic divergence based on mitochondrial DNA demonstrates a demographically independent management unit not previously recognized. This population's fidelity to discrete and predictable locations offers clear population assessment, monitoring and management options.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BBSIBX
                Biology
                Biology
                MDPI AG
                2079-7737
                December 2022
                November 22 2022
                : 11
                : 12
                : 1689
                Article
                10.3390/biology11121689
                bc537209-7dbc-4409-af6b-2777fe36fbf8
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article