12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quercetin Rejuvenates Sensitization of Colistin-Resistant Escherichia coli and Klebsiella Pneumoniae Clinical Isolates to Colistin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colistin is being considered as “the last ditch” treatment in many infections caused by Gram-negative stains. However, colistin is becoming increasingly invalid in treating patients who are infected with colistin-resistant Escherichia coli ( E. coli) and Klebsiella Pneumoniae ( K. pneumoniae). To cope with the continuous emergence of colistin resistance, the development of new drugs and therapies is highly imminent. Herein, in this work, we surprisingly found that the combination of quercetin with colistin could efficiently and synergistically eradicate the colistin-resistant E. coli and K. pneumoniae, as confirmed by the synergy checkboard and time-kill assay. Mechanismly, the treatment of quercetin combined with colistin could significantly downregulate the expression of mcr-1 and mgrB that are responsible for colistin-resistance, synergistically enhancing the bacterial cell membrane damage efficacy of colistin. The colistin/quercetin combination was notably efficient in eradicating the colistin-resistant E. coli and K. pneumoniae both in vitro and in vivo. Therefore, our results may provide an efficient alternative pathway against colistin-resistant E. coli and K. pneumoniae infections.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.

          Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The rise of the Enterococcus: beyond vancomycin resistance.

            The genus Enterococcus includes some of the most important nosocomial multidrug-resistant organisms, and these pathogens usually affect patients who are debilitated by other, concurrent illnesses and undergoing prolonged hospitalization. This Review discusses the factors involved in the changing epidemiology of enterococcal infections, with an emphasis on Enterococcus faecium as an emergent and challenging nosocomial problem. The effects of antibiotics on the gut microbiota and on colonization with vancomycin-resistant enterococci are highlighted, including how enterococci benefit from the antibiotic-mediated eradication of gram-negative members of the gut microbiota. Analyses of enterococcal genomes indicate that there are certain genetic lineages, including an E. faecium clade of ancient origin, with the ability to succeed in the hospital environment, and the possible virulence determinants that are found in these genetic lineages are discussed. Finally, we review the most important mechanisms of resistance to the antibiotics that are used to treat vancomycin-resistant enterococci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism

              Cancer is a problem with worldwide importance and is the second leading cause of death globally. Cancer cells reprogram their metabolism to support their uncontrolled expansion by increasing biomass (anabolic metabolism—glycolysis) at the expense of their energy (bioenergetics-mitochondrial function) requirements. In this aspect, metabolic reprogramming stands out as a key biological process in understanding the conversion of a normal cell into a neoplastic precursor. Quercetin is the major representative of the flavonoid subclass of flavonols. Quercetin is ubiquitously present in fruits and vegetables, being one of the most common dietary flavonols in the western diet. The anti-cancer effects of quercetin include its ability to promote the loss of cell viability, apoptosis and autophagy through the modulation of PI3K/Akt/mTOR, Wnt/β-catenin, and MAPK/ERK1/2 pathways. In this review, we discuss the role of quercetin in cancer metabolism, addressing specifically its ability to target molecular pathways involved in glucose metabolism and mitochondrial function.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Chem
                Front Chem
                Front. Chem.
                Frontiers in Chemistry
                Frontiers Media S.A.
                2296-2646
                25 November 2021
                2021
                : 9
                : 795150
                Affiliations
                [ 1 ]School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
                [ 2 ]Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
                [ 3 ]Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
                Author notes

                Edited by: Qihui Zhou, Qingdao University, China

                Reviewed by: Xinghong Zhao, Sichuan Agricultural University, China

                Chunxiong Zheng, Sun Yat-sen University, China

                *Correspondence: Yizhou Zhan, zhanyz@ 123456ucas.ac.cn ; Tieli Zhou, wyztli@ 123456163.com ; Jianming Cao, wzcjming@ 123456163.com

                This article was submitted to Nanoscience, a section of the journal Frontiers in Chemistry

                Article
                795150
                10.3389/fchem.2021.795150
                8656154
                34900948
                bb7e193a-3fae-4d1e-b05e-17ba157a618b
                Copyright © 2021 Lin, Zhang, Liu, Ye, Chen, Huang, Zeng, Liao, Zhan, Zhou and Cao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 October 2021
                : 03 November 2021
                Categories
                Chemistry
                Original Research

                escherichia coli,klebsiella pneumoniae,quercetin,synergy mechanism,colistinresistance

                Comments

                Comment on this article