90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Singular value decomposition for genome-wide expression data processing and modeling

      , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic determination of genetic network architecture.

          Technologies to measure whole-genome mRNA abundances and methods to organize and display such data are emerging as valuable tools for systems-level exploration of transcriptional regulatory networks. For instance, it has been shown that mRNA data from 118 genes, measured at several time points in the developing hindbrain of mice, can be hierarchically clustered into various patterns (or 'waves') whose members tend to participate in common processes. We have previously shown that hierarchical clustering can group together genes whose cis-regulatory elements are bound by the same proteins in vivo. Hierarchical clustering has also been used to organize genes into hierarchical dendograms on the basis of their expression across multiple growth conditions. The application of Fourier analysis to synchronized yeast mRNA expression data has identified cell-cycle periodic genes, many of which have expected cis-regulatory elements. Here we apply a systematic set of statistical algorithms, based on whole-genome mRNA data, partitional clustering and motif discovery, to identify transcriptional regulatory sub-networks in yeast-without any a priori knowledge of their structure or any assumptions about their dynamics. This approach uncovered new regulons (sets of co-regulated genes) and their putative cis-regulatory elements. We used statistical characterization of known regulons and motifs to derive criteria by which we infer the biological significance of newly discovered regulons and motifs. Our approach holds promise for the rapid elucidation of genetic network architecture in sequenced organisms in which little biology is known.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation.

              Whole-genome mRNA quantitation can be used to identify the genes that are most responsive to environmental or genotypic change. By searching for mutually similar DNA elements among the upstream non-coding DNA sequences of these genes, we can identify candidate regulatory motifs and corresponding candidate sets of coregulated genes. We have tested this strategy by applying it to three extensively studied regulatory systems in the yeast Saccharomyces cerevisiae: galactose response, heat shock, and mating type. Galactose-response data yielded the known binding site of Gal4, and six of nine genes known to be induced by galactose. Heat shock data yielded the cell-cycle activation motif, which is known to mediate cell-cycle dependent activation, and a set of genes coding for all four nucleosomal proteins. Mating type alpha and a data yielded all of the four relevant DNA motifs and most of the known a- and alpha-specific genes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 29 2000
                August 29 2000
                : 97
                : 18
                : 10101-10106
                Article
                10.1073/pnas.97.18.10101
                10963673
                bafa4cf9-96ce-4edf-b7d0-66db82e0f277
                © 2000
                History

                Comments

                Comment on this article