2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mandating indoor air quality for public buildings

      1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          If some countries lead by example, standards may increasingly become normalized

          Abstract

          People living in urban and industrialized societies, which are expanding globally, spend more than 90% of their time in the indoor environment, breathing indoor air (IA). Despite decades of research and advocacy, most countries do not have legislated indoor air quality (IAQ) performance standards for public spaces that address concentration levels of IA pollutants ( 1 ). Few building codes address operation, maintenance, and retrofitting, and most do not focus on airborne disease transmission. But the COVID-19 pandemic has made all levels of society, from community members to decision-makers, realize the importance of IAQ for human health, wellbeing, productivity, and learning. We propose that IAQ standards be mandatory for public spaces. Although enforcement of IAQ performance standards in homes is not possible, homes must be designed and equipped so that they could meet the standards.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

          Summary Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ten scientific reasons in support of airborne transmission of SARS-CoV-2

            Heneghan and colleagues' systematic review, funded by WHO, published in March, 2021, as a preprint, states: “The lack of recoverable viral culture samples of SARS-CoV-2 prevents firm conclusions to be drawn about airborne transmission”. 1 This conclusion, and the wide circulation of the review's findings, is concerning because of the public health implications. If an infectious virus spreads predominantly through large respiratory droplets that fall quickly, the key control measures are reducing direct contact, cleaning surfaces, physical barriers, physical distancing, use of masks within droplet distance, respiratory hygiene, and wearing high-grade protection only for so-called aerosol-generating health-care procedures. Such policies need not distinguish between indoors and outdoors, since a gravity-driven mechanism for transmission would be similar for both settings. But if an infectious virus is mainly airborne, an individual could potentially be infected when they inhale aerosols produced when an infected person exhales, speaks, shouts, sings, sneezes, or coughs. Reducing airborne transmission of virus requires measures to avoid inhalation of infectious aerosols, including ventilation, air filtration, reducing crowding and time spent indoors, use of masks whenever indoors, attention to mask quality and fit, and higher-grade protection for health-care staff and front-line workers. 2 Airborne transmission of respiratory viruses is difficult to demonstrate directly. 3 Mixed findings from studies that seek to detect viable pathogen in air are therefore insufficient grounds for concluding that a pathogen is not airborne if the totality of scientific evidence indicates otherwise. Decades of painstaking research, which did not include capturing live pathogens in the air, showed that diseases once considered to be spread by droplets are airborne. 4 Ten streams of evidence collectively support the hypothesis that SARS-CoV-2 is transmitted primarily by the airborne route. 5 First, superspreading events account for substantial SARS-CoV-2 transmission; indeed, such events may be the pandemic's primary drivers. 6 Detailed analyses of human behaviours and interactions, room sizes, ventilation, and other variables in choir concerts, cruise ships, slaughterhouses, care homes, and correctional facilities, among other settings, have shown patterns—eg, long-range transmission and overdispersion of the basic reproduction number (R0), discussed below—consistent with airborne spread of SARS-CoV-2 that cannot be adequately explained by droplets or fomites. 6 The high incidence of such events strongly suggests the dominance of aerosol transmission. Second, long-range transmission of SARS-CoV-2 between people in adjacent rooms but never in each other's presence has been documented in quarantine hotels. 7 Historically, it was possible to prove long-range transmission only in the complete absence of community transmission. 4 Third, asymptomatic or presymptomatic transmission of SARS-CoV-2 from people who are not coughing or sneezing is likely to account for at least a third, and perhaps up to 59%, of all transmission globally and is a key way SARS-CoV-2 has spread around the world, 8 supportive of a predominantly airborne mode of transmission. Direct measurements show that speaking produces thousands of aerosol particles and few large droplets, 9 which supports the airborne route. Fourth, transmission of SARS-CoV-2 is higher indoors than outdoors 10 and is substantially reduced by indoor ventilation. 5 Both observations support a predominantly airborne route of transmission. Fifth, nosocomial infections have been documented in health-care organisations, where there have been strict contact-and-droplet precautions and use of personal protective equipment (PPE) designed to protect against droplet but not aerosol exposure. 11 Sixth, viable SARS-CoV-2 has been detected in the air. In laboratory experiments, SARS-CoV-2 stayed infectious in the air for up to 3 h with a half-life of 1·1 h. 12 Viable SARS-CoV-2 was identified in air samples from rooms occupied by COVID-19 patients in the absence of aerosol-generating health-care procedures 13 and in air samples from an infected person's car. 14 Although other studies have failed to capture viable SARS-CoV-2 in air samples, this is to be expected. Sampling of airborne virus is technically challenging for several reasons, including limited effectiveness of some sampling methods for collecting fine particles, viral dehydration during collection, viral damage due to impact forces (leading to loss of viability), reaerosolisation of virus during collection, and viral retention in the sampling equipment. 3 Measles and tuberculosis, two primarily airborne diseases, have never been cultivated from room air. 15 Seventh, SARS-CoV-2 has been identified in air filters and building ducts in hospitals with COVID-19 patients; such locations could be reached only by aerosols. 16 Eighth, studies involving infected caged animals that were connected to separately caged uninfected animals via an air duct have shown transmission of SARS-CoV-2 that can be adequately explained only by aerosols. 17 Ninth, no study to our knowledge has provided strong or consistent evidence to refute the hypothesis of airborne SARS-CoV-2 transmission. Some people have avoided SARS-CoV-2 infection when they have shared air with infected people, but this situation could be explained by a combination of factors, including variation in the amount of viral shedding between infectious individuals by several orders of magnitude and different environmental (especially ventilation) conditions. 18 Individual and environmental variation means that a minority of primary cases (notably, individuals shedding high levels of virus in indoor, crowded settings with poor ventilation) account for a majority of secondary infections, which is supported by high-quality contact tracing data from several countries.19, 20 Wide variation in respiratory viral load of SARS-CoV-2 counters arguments that SARS-CoV-2 cannot be airborne because the virus has a lower R0 (estimated at around 2·5) 21 than measles (estimated at around 15), 22 especially since R0, which is an average, does not account for the fact that only a minority of infectious individuals shed high amounts of virus. Overdispersion of R0 is well documented in COVID-19. 23 Tenth, there is limited evidence to support other dominant routes of transmission—ie, respiratory droplet or fomite.9, 24 Ease of infection between people in close proximity to each other has been cited as proof of respiratory droplet transmission of SARS-CoV-2. However, close-proximity transmission in most cases along with distant infection for a few when sharing air is more likely to be explained by dilution of exhaled aerosols with distance from an infected person. 9 The flawed assumption that transmission through close proximity implies large respiratory droplets or fomites was historically used for decades to deny the airborne transmission of tuberculosis and measles.15, 25 This became medical dogma, ignoring direct measurements of aerosols and droplets which reveal flaws such as the overwhelming number of aerosols produced in respiratory activities and the arbitrary boundary in particle size of 5 μm between aerosols and droplets, instead of the correct boundary of 100 μm.15, 25 It is sometimes argued that since respiratory droplets are larger than aerosols, they must contain more viruses. However, in diseases where pathogen concentrations have been quantified by particle size, smaller aerosols showed higher pathogen concentrations than droplets when both were measured. 15 In conclusion, we propose that it is a scientific error to use lack of direct evidence of SARS-CoV-2 in some air samples to cast doubt on airborne transmission while overlooking the quality and strength of the overall evidence base. There is consistent, strong evidence that SARS-CoV-2 spreads by airborne transmission. Although other routes can contribute, we believe that the airborne route is likely to be dominant. The public health community should act accordingly and without further delay. © 2021 Ap Garo/Phanie/Science Photo Library 2021
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemistry in indoor environments: 20 years of research.

              In the two decades since the first issue of Indoor Air, there have been over 250 peer-reviewed publications addressing chemical reactions among indoor pollutants. The present review has assembled and categorized these publications. It begins with a brief account of the state of our knowledge in 1991 regarding 'indoor chemistry', much of which came from corrosion and art conservation studies. It then outlines what we have learned in the period between 1991 and 2010 in the context of the major reference categories: gas-phase chemistry, surface chemistry, health effects and reviews/workshops. The indoor reactions that have received the greatest attention are those involving ozone-with terpenoids in the gas-phase as well as with the surfaces of common materials, furnishings, and the occupants themselves. It has become clear that surface reactions often have a larger impact on indoor settings than do gas-phase processes. This review concludes with a subjective list of major research needs going forward, including more information on the decomposition of common indoor pollutants, better understanding of how sorbed water influences surface reactions, and further identification of short-lived products of indoor chemistry. Arguably, the greatest need is for increased knowledge regarding the impact that indoor chemistry has on the health and comfort of building occupants. Indoor chemistry changes the type and concentration of chemicals present in indoor environments. In the past, products of indoor chemistry were often overlooked, reflecting a focus on stable, relatively non-polar organic compounds coupled with the use of sampling and analytical methods that were unable to 'see' many of the products of such chemistry. Today, researchers who study indoor environments are more aware of the potential for chemistry to occur. Awareness is valuable, because it leads to the use of sampling methods and analytical tools that can detect changes in indoor environments resulting from chemical processes. This, in turn, leads to a more complete understanding of occupants' chemical exposures, potential links between these exposures and adverse health effects and, finally, steps that might be taken to mitigate these adverse effects. © 2011 John Wiley & Sons A/S.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                March 29 2024
                March 29 2024
                : 383
                : 6690
                : 1418-1420
                Affiliations
                [1 ]The list of author affiliations is provided in the supplementary materials.
                Article
                10.1126/science.adl0677
                b9a1a3cc-b0dc-4610-bada-8bb6d8952284
                © 2024
                History

                Comments

                Comment on this article