19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria

      research-article
      , ,
      Protoplasma
      Springer Vienna
      Cell evolution, Chromista, Harosa, Rhizarian phylogeny, Cercozoa, Retaria

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infrakingdom Rhizaria is one of four major subgroups with distinct cell body plans that comprise eukaryotic kingdom Chromista. Unlike other chromists, Rhizaria are mostly heterotrophic flagellates, amoebae or amoeboflagellates, commonly with reticulose (net-like) or filose (thread-like) feeding pseudopodia; uniquely for eukaryotes, cilia have proximal ciliary transition-zone hub-lattices. They comprise predominantly flagellate phylum Cercozoa and reticulopodial phylum Retaria, whose exact phylogenetic relationship has been uncertain. Given even less clear relationships amongst cercozoan classes, we sequenced partial transcriptomes of seven Cercozoa representing five classes and endomyxan retarian Filoreta marina to establish 187-gene multiprotein phylogenies. Ectoreta (retarian infraphyla Foraminifera, Radiozoa) branch within classical Cercozoa as sister to reticulose Endomyxa. This supports recent transfer of subphylum Endomyxa from Cercozoa to Retaria alongside subphylum Ectoreta which embraces classical retarians where capsules or tests subdivide cells into organelle-containing endoplasm and anastomosing pseudopodial net-like ectoplasm. Cercozoa are more homogeneously filose, often with filose pseudopodia and/or posterior ciliary gliding motility: zooflagellate Helkesimastix and amoeboid Guttulinopsis form a strongly supported clade, order Helkesida. Cercomonads are polyphyletic (Cercomonadida sister to glissomonads; Paracercomonadida deeper). Thecofilosea are a clade, whereas Imbricatea may not be; Sarcomonadea may be paraphyletic. Helkesea and Metromonadea are successively deeper outgroups within cercozoan subphylum Monadofilosa; subphylum Reticulofilosa (paraphyletic on site-heterogeneous trees) branches earliest, Granofilosea before Chlorarachnea. Our multiprotein trees confirm that Rhizaria are sisters of infrakingdom Halvaria (Alveolata, Heterokonta) within chromist subkingdom Harosa (= SAR); they further support holophyly of chromist subkingdom Hacrobia, and are consistent with holophyly of Chromista as sister of kingdom Plantae. Site-heterogeneous rDNA trees group Kraken with environmental DNA clade ‘eSarcomonad’, not Paracercomonadida. Ectoretan fossil dates evidence ultrarapid episodic stem sequence evolution. We discuss early rhizarian cell evolution and multigene tree coevolutionary patterns, gene-paralogue evidence for chromist monophyly, and integrate this with fossil evidence for the age of Rhizaria and eukaryote cells, and revise rhizarian classification.

          Electronic supplementary material

          The online version of this article (10.1007/s00709-018-1241-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: not found
          • Article: not found

          Punctuated equilibria: the tempo and mode of evolution reconsidered

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating the timing of early eukaryotic diversification with multigene molecular clocks.

            Although macroscopic plants, animals, and fungi are the most familiar eukaryotes, the bulk of eukaryotic diversity is microbial. Elucidating the timing of diversification among the more than 70 lineages is key to understanding the evolution of eukaryotes. Here, we use taxon-rich multigene data combined with diverse fossils and a relaxed molecular clock framework to estimate the timing of the last common ancestor of extant eukaryotes and the divergence of major clades. Overall, these analyses suggest that the last common ancestor lived between 1866 and 1679 Ma, consistent with the earliest microfossils interpreted with confidence as eukaryotic. During this interval, the Earth's surface differed markedly from today; for example, the oceans were incompletely ventilated, with ferruginous and, after about 1800 Ma, sulfidic water masses commonly lying beneath moderately oxygenated surface waters. Our time estimates also indicate that the major clades of eukaryotes diverged before 1000 Ma, with most or all probably diverging before 1200 Ma. Fossils, however, suggest that diversity within major extant clades expanded later, beginning about 800 Ma, when the oceans began their transition to a more modern chemical state. In combination, paleontological and molecular approaches indicate that long stems preceded diversification in the major eukaryotic lineages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A general comparison of relaxed molecular clock models.

              Several models have been proposed to relax the molecular clock in order to estimate divergence times. However, it is unclear which model has the best fit to real data and should therefore be used to perform molecular dating. In particular, we do not know whether rate autocorrelation should be considered or which prior on divergence times should be used. In this work, we propose a general bench mark of alternative relaxed clock models. We have reimplemented most of the already existing models, including the popular lognormal model, as well as various prior choices for divergence times (birth-death, Dirichlet, uniform), in a common Bayesian statistical framework. We also propose a new autocorrelated model, called the "CIR" process, with well-defined stationary properties. We assess the relative fitness of these models and priors, when applied to 3 different protein data sets from eukaryotes, vertebrates, and mammals, by computing Bayes factors using a numerical method called thermodynamic integration. We find that the 2 autocorrelated models, CIR and lognormal, have a similar fit and clearly outperform uncorrelated models on all 3 data sets. In contrast, the optimal choice for the divergence time prior is more dependent on the data investigated. Altogether, our results provide useful guidelines for model choice in the field of molecular dating while opening the way to more extensive model comparisons.
                Bookmark

                Author and article information

                Contributors
                tom.cavalier-smith@zoo.ox.ac.uk
                Journal
                Protoplasma
                Protoplasma
                Protoplasma
                Springer Vienna (Vienna )
                0033-183X
                1615-6102
                17 April 2018
                17 April 2018
                2018
                : 255
                : 5
                : 1517-1574
                Affiliations
                ISNI 0000 0004 1936 8948, GRID grid.4991.5, Department of Zoology, , University of Oxford, ; South Parks Road, Oxford, OX1 3PS UK
                Author notes

                Handling Editor: Peter Nick

                Article
                1241
                10.1007/s00709-018-1241-1
                6133090
                29666938
                b944ecc8-524e-420f-b45d-e045a7f76fde
                © The Author(s) 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 11 December 2017
                : 12 March 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000270, Natural Environment Research Council;
                Award ID: NE/E004156/1
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag GmbH Austria, part of Springer Nature 2018

                Molecular biology
                cell evolution,chromista,harosa,rhizarian phylogeny,cercozoa,retaria
                Molecular biology
                cell evolution, chromista, harosa, rhizarian phylogeny, cercozoa, retaria

                Comments

                Comment on this article