62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic Evolution of Toll-Like Receptor Multigene Families in Echinoderms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genome sequence of the purple sea urchin, Strongylocentrotus purpuratus, a large and long-lived invertebrate, provides a new perspective on animal immunity. Analysis of this genome uncovered a highly complex immune system in which the gene families that encode homologs of the pattern recognition receptors that form the core of vertebrate innate immunity are encoded in large multigene families. The sea urchin genome contains 253 Toll-like receptor (TLR) sequences, more than 200 Nod-like receptors and 1095 scavenger receptor cysteine-rich domains, a 10-fold expansion relative to vertebrates. Given their stereotypic protein structure and simple intron-exon architecture, the TLRs are the most tractable of these families for more detailed analysis. A role for these receptors in immune defense is suggested by their similarity to TLRs in other organisms, sequence diversity, and expression in immunologically active tissues, including phagocytes. The complexity of the sea urchin TLR multigene families is largely derived from expansions independent of those in vertebrates and protostomes, although a small family of TLRs with structure similar to that of Drosophila Toll can be traced to an ancient eumetazoan ancestor. Several other echinoderm sequences are now available, including Lytechinus variegatus, as well as partial sequences from two other sea urchin species. Here, we present an analysis of the invertebrate deuterostome TLRs with emphasis on the echinoderms. Representatives of most of the S. purpuratus TLR subfamilies and homologs of the mccTLR sequences are found in L. variegatus, although the L. variegatus TLR gene family is notably smaller (68 TLR sequences). The phylogeny of these genes within sea urchins highlights lineage-specific expansions at higher resolution than is evident at the phylum level. These analyses identify quickly evolving TLR subfamilies that are likely to have novel immune recognition functions and other, more stable, subfamilies that may function more similarly to those of vertebrates.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          PAML 4: phylogenetic analysis by maximum likelihood.

          PAML, currently in version 4, is a package of programs for phylogenetic analyses of DNA and protein sequences using maximum likelihood (ML). The programs may be used to compare and test phylogenetic trees, but their main strengths lie in the rich repertoire of evolutionary models implemented, which can be used to estimate parameters in models of sequence evolution and to test interesting biological hypotheses. Uses of the programs include estimation of synonymous and nonsynonymous rates (d(N) and d(S)) between two protein-coding DNA sequences, inference of positive Darwinian selection through phylogenetic comparison of protein-coding genes, reconstruction of ancestral genes and proteins for molecular restoration studies of extinct life forms, combined analysis of heterogeneous data sets from multiple gene loci, and estimation of species divergence times incorporating uncertainties in fossil calibrations. This note discusses some of the major applications of the package, which includes example data sets to demonstrate their use. The package is written in ANSI C, and runs under Windows, Mac OSX, and UNIX systems. It is available at -- (http://abacus.gene.ucl.ac.uk/software/paml.html).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults.

            The cytokine-induced activation cascade of NF-kappaB in mammals and the activation of the morphogen dorsal in Drosophila embryos show striking structural and functional similarities (Toll/IL-1, Cactus/I-kappaB, and dorsal/NF-kappaB). Here we demonstrate that these parallels extend to the immune response of Drosophila. In particular, the intracellular components of the dorsoventral signaling pathway (except for dorsal) and the extracellular Toll ligand, spätzle, control expression of the antifungal peptide gene drosomycin in adults. We also show that mutations in the Toll signaling pathway dramatically reduce survival after fungal infection. Antibacterial genes are induced either by a distinct pathway involving the immune deficiency gene (imd) or by combined activation of both imd and dorsoventral pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of vertebrate Toll-like receptors.

              The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced >70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt.
                Bookmark

                Author and article information

                Journal
                Front Immunol
                Front Immunol
                Front. Immun.
                Frontiers in Immunology
                Frontiers Research Foundation
                1664-3224
                05 June 2012
                2012
                : 3
                : 136
                Affiliations
                [1] 1simpleDepartment of Immunology, Sunnybrook Research Institute, University of Toronto Toronto, ON, Canada
                [2] 2simpleDepartment of Medical Biophysics, Sunnybrook Research Institute, University of Toronto Toronto, ON, Canada
                Author notes

                Edited by: Larry J. Dishaw, University of South Florida, USA

                Reviewed by: Mike Criscitiello, Texas A&M University, USA; Zeev Pancer, University of Maryland, USA; Coenraad Adema, University of New Mexico, USA

                *Correspondence: Jonathan P. Rast, Department of Medical Biophysics and Department of Immunology, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Room S126B, Toronto, ON, Canada M4N 3M5. e-mail: jrast@ 123456sri.utoronto.ca

                This article was submitted to Frontiers in Molecular Innate Immunity, a specialty of Frontiers in Immunology.

                Article
                10.3389/fimmu.2012.00136
                3367398
                22679446
                b93d067a-e630-42e6-9f3d-a4084a11e00d
                Copyright © 2012 Buckley and Rast.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 21 February 2012
                : 12 May 2012
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 49, Pages: 16, Words: 11389
                Categories
                Immunology
                Original Research

                Immunology
                sea urchins,innate immunity,toll-like receptors,multigene family,evolution
                Immunology
                sea urchins, innate immunity, toll-like receptors, multigene family, evolution

                Comments

                Comment on this article