26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries

      , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lithium-ion batteries with ever-increasing energy densities are needed for batteries for advanced devices and all-electric vehicles. Silicon has been highlighted as a promising anode material because of its superior specific capacity. During repeated charge-discharge cycles, silicon undergoes huge volume changes. This limits cycle life via particle pulverization and an unstable electrode-electrolyte interface, especially when the particle sizes are in the micrometer range. We show that the incorporation of 5 weight % polyrotaxane to conventional polyacrylic acid binder imparts extraordinary elasticity to the polymer network originating from the ring sliding motion of polyrotaxane. This binder combination keeps even pulverized silicon particles coalesced without disintegration, enabling stable cycle life for silicon microparticle anodes at commercial-level areal capacities.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Book: not found

          The operated Markov´s chains in economy (discrete chains of Markov with the income)

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A major constituent of brown algae for use in high-capacity Li-ion batteries.

              The identification of similarities in the material requirements for applications of interest and those of living organisms provides opportunities to use renewable natural resources to develop better materials and design better devices. In our work, we harness this strategy to build high-capacity silicon (Si) nanopowder-based lithium (Li)-ion batteries with improved performance characteristics. Si offers more than one order of magnitude higher capacity than graphite, but it exhibits dramatic volume changes during electrochemical alloying and de-alloying with Li, which typically leads to rapid anode degradation. We show that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                July 20 2017
                July 21 2017
                July 20 2017
                July 21 2017
                : 357
                : 6348
                : 279-283
                Article
                10.1126/science.aal4373
                28729506
                b89b09fa-013c-4a5a-8d77-f53a987f36d5
                © 2017

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article