1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Longitudinal MRI-Based Artificial Intelligence System to Predict Pathological Complete Response After Neoadjuvant Therapy in Rectal Cancer: A Multicenter Validation Study

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND:

          Accurate prediction of response to neoadjuvant chemoradiotherapy is critical for subsequent treatment decisions for patients with locally advanced rectal cancer.

          OBJECTIVE:

          To develop and validate a deep learning model based on the comparison of paired MRI before and after neoadjuvant chemoradiotherapy to predict pathological complete response.

          DESIGN:

          By capturing the changes from MRI before and after neoadjuvant chemoradiotherapy in 638 patients, we trained a multitask deep learning model for response prediction (DeepRP-RC) that also allowed simultaneous segmentation. Its performance was independently tested in an internal and 3 external validation sets, and its prognostic value was also evaluated.

          SETTINGS:

          Multicenter study.

          PATIENTS:

          We retrospectively enrolled 1201 patients diagnosed with locally advanced rectal cancer who underwent neoadjuvant chemoradiotherapy before total mesorectal excision. Patients had been treated at 1 of 4 hospitals in China between January 2013 and December 2020.

          MAIN OUTCOME MEASURES:

          The main outcome was the accuracy of predicting pathological complete response, measured as the area under receiver operating curve for the training and validation data sets.

          RESULTS:

          DeepRP-RC achieved high performance in predicting pathological complete response after neoadjuvant chemoradiotherapy, with area under the curve values of 0.969 (0.942–0.996), 0.946 (0.915–0.977), 0.943 (0.888–0.998), and 0.919 (0.840–0.997) for the internal and 3 external validation sets, respectively. DeepRP-RC performed similarly well in the subgroups defined by receipt of radiotherapy, tumor location, T/N stages before and after neoadjuvant chemoradiotherapy, and age. Compared with experienced radiologists, the model showed substantially higher performance in pathological complete response prediction. The model was also highly accurate in identifying the patients with poor response. Furthermore, the model was significantly associated with disease-free survival independent of clinicopathological variables.

          LIMITATIONS:

          This study was limited by its retrospective design and absence of multiethnic data.

          CONCLUSIONS:

          DeepRP-RC could be an accurate preoperative tool for pathological complete response prediction in rectal cancer after neoadjuvant chemoradiotherapy.

          UN SISTEMA DE IA BASADO EN RESONANCIA MAGNÉTICA LONGITUDINAL PARA PREDECIR LA RESPUESTA PATOLÓGICA COMPLETA DESPUÉS DE LA TERAPIA NEOADYUVANTE EN EL CÁNCER DE RECTO: UN ESTUDIO DE VALIDACIÓN MULTICÉNTRICO

          ANTECEDENTES:

          La predicción precisa de la respuesta a la quimiorradioterapia neoadyuvante es fundamental para las decisiones de tratamiento posteriores para los pacientes con cáncer de recto localmente avanzado.

          OBJETIVO:

          Desarrollar y validar un modelo de aprendizaje profundo basado en la comparación de resonancias magnéticas pareadas antes y después de la quimiorradioterapia neoadyuvante para predecir la respuesta patológica completa.

          DISEÑO:

          Al capturar los cambios de las imágenes de resonancia magnética antes y después de la quimiorradioterapia neoadyuvante en 638 pacientes, entrenamos un modelo de aprendizaje profundo multitarea para la predicción de respuesta (DeepRP-RC) que también permitió la segmentación simultánea. Su rendimiento se probó de forma independiente en un conjunto de validación interna y tres externas, y también se evaluó su valor pronóstico.

          ESCENARIO:

          Estudio multicéntrico.

          PACIENTES:

          Volvimos a incluir retrospectivamente a 1201 pacientes diagnosticados con cáncer de recto localmente avanzado y sometidos a quimiorradioterapia neoadyuvante antes de la escisión total del mesorrecto. Eran de cuatro hospitales en China en el período entre enero de 2013 y diciembre de 2020.

          PRINCIPALES MEDIDAS DE RESULTADO:

          Los principales resultados fueron la precisión de la predicción de la respuesta patológica completa, medida como el área bajo la curva operativa del receptor para los conjuntos de datos de entrenamiento y validación.

          RESULTADOS:

          DeepRP-RC logró un alto rendimiento en la predicción de la respuesta patológica completa después de la quimiorradioterapia neoadyuvante, con valores de área bajo la curva de 0,969 (0,942–0,996), 0,946 (0,915–0,977), 0,943 (0,888–0,998), y 0,919 (0,840–0,997) para los conjuntos de validación interna y las tres externas, respectivamente. DeepRP-RC se desempeñó de manera similar en los subgrupos definidos por la recepción de radioterapia, la ubicación del tumor, los estadios T/N antes y después de la quimiorradioterapia neoadyuvante y la edad. En comparación con los radiólogos experimentados, el modelo mostró un rendimiento sustancialmente mayor en la predicción de la respuesta patológica completa. El modelo también fue muy preciso en la identificación de los pacientes con mala respuesta. Además, el modelo se asoció significativamente con la supervivencia libre de enfermedad independientemente de las variables clinicopatológicas.

          LIMITACIONES:

          Este estudio estuvo limitado por el diseño retrospectivo y la ausencia de datos multiétnicos.

          CONCLUSIONES:

          DeepRP-RC podría servir como una herramienta preoperatoria precisa para la predicción de la respuesta patológica completa en el cáncer de recto después de la quimiorradioterapia neoadyuvante. (Traducción—Dr. Felipe Bellolio)

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Dermatologist-level classification of skin cancer with deep neural networks

          Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

            Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement

                Bookmark

                Author and article information

                Journal
                Diseases of the Colon & Rectum
                Ovid Technologies (Wolters Kluwer Health)
                0012-3706
                2023
                September 08 2023
                December 2023
                : 66
                : 12
                : e1195-e1206
                Affiliations
                [1 ]Department of General Surgery, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou City, China
                [2 ]Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou City, China
                [3 ]Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou City, China
                [4 ]Department of Radiation Oncology, School of Medicine, Stanford University, California
                [5 ]School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai City, China
                [6 ]Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou City, China
                [7 ]Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou City, China
                [8 ]Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou City, China
                [9 ]Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou City, China
                [10 ]Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou City, China
                Article
                10.1097/DCR.0000000000002931
                b859214b-3093-41bc-a5c9-8ed026411c7b
                © 2023
                History

                Comments

                Comment on this article