7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The population doctrine in cognitive neuroscience

      ,
      Neuron
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          The importance of mixed selectivity in complex cognitive tasks.

          Single-neuron activity in the prefrontal cortex (PFC) is tuned to mixtures of multiple task-related aspects. Such mixed selectivity is highly heterogeneous, seemingly disordered and therefore difficult to interpret. We analysed the neural activity recorded in monkeys during an object sequence memory task to identify a role of mixed selectivity in subserving the cognitive functions ascribed to the PFC. We show that mixed selectivity neurons encode distributed information about all task-relevant aspects. Each aspect can be decoded from the population of neurons even when single-cell selectivity to that aspect is eliminated. Moreover, mixed selectivity offers a significant computational advantage over specialized responses in terms of the repertoire of input-output functions implementable by readout neurons. This advantage originates from the highly diverse nonlinear selectivity to mixtures of task-relevant variables, a signature of high-dimensional neural representations. Crucially, this dimensionality is predictive of animal behaviour as it collapses in error trials. Our findings recommend a shift of focus for future studies from neurons that have easily interpretable response tuning to the widely observed, but rarely analysed, mixed selectivity neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How does the brain solve visual object recognition?

            Mounting evidence suggests that 'core object recognition,' the ability to rapidly recognize objects despite substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However, the algorithm that produces this solution remains poorly understood. Here we review evidence ranging from individual neurons and neuronal populations to behavior and computational models. We propose that understanding this algorithm will require using neuronal and psychophysical data to sift through many computational models, each based on building blocks of small, canonical subnetworks with a common functional goal. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural population dynamics during reaching

              Most theories of motor cortex have assumed that neural activity represents movement parameters. This view derives from an analogous approach to primary visual cortex, where neural activity represents patterns of light. Yet it is unclear how well that analogy holds. Single-neuron responses in motor cortex appear strikingly complex, and there is marked disagreement regarding which movement parameters are represented. A better analogy might be with other motor systems, where a common principle is rhythmic neural activity. We found that motor cortex responses during reaching contain a brief but strong oscillatory component, something quite unexpected for a non-periodic behavior. Oscillation amplitude and phase followed naturally from the preparatory state, suggesting a mechanistic role for preparatory neural activity. These results demonstrate unexpected yet surprisingly simple structure in the population response. That underlying structure explains many of the confusing features of individual-neuron responses.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Neuron
                Neuron
                Elsevier BV
                08966273
                August 2021
                August 2021
                Article
                10.1016/j.neuron.2021.07.011
                34416170
                b8565980-c27a-4190-889b-3d37310f3bd2
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article