5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Study of Biochemical Parameters as Predictors for Need of Invasive Ventilation in Severely Ill COVID-19 Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Though laboratory tests have been shown to predict mortality in COVID-19, there is still a dearth of information regarding the role of biochemical parameters in predicting the type of ventilatory support that these patients may require.

          Methods

          The purpose of our retrospective observational study was to investigate the relationship between biochemical parameters and the type of ventilatory support needed for the intensive care of severely ill COVID-19 patients. We comprehensively recorded history, physical examination, vital signs from point-of-care testing (POCT) devices, clinical diagnosis, details of the ventilatory support required in intensive care and the results of the biochemical analysis at the time of admission. Appropriate statistical methods were used and P-values < 0.05 were considered significant. Receiver operating characteristics (ROC) analysis was performed and Area Under the Curve (AUC) of 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and >0.9, respectively, were regarded as acceptable, fair, good, and exceptional for discrimination.

          Results

          Statistically significant differences (p<0.05) in Urea (p = 0.0351), Sodium (p = 0.0142), Indirect Bilirubin (p = 0.0251), Albumin (p = 0.0272), Aspartate Transaminase (AST) (p = 0.0060) and Procalcitonin (PCT) (p = 0.0420) were observed between the patients who were maintained on non-invasive ventilations as compared to those who required invasive ventilation. In patients who required invasive ventilation, the levels of Urea, Sodium, Indirect bilirubin, AST and PCT were higher while Albumin was lower. On ROC analysis, higher levels of Albumin was found to be acceptable indicator of maintenance on non-invasive ventilation while higher levels of Sodium and PCT were found to be fair predictor of requirement of invasive ventilation.

          Conclusion

          Our study emphasizes the role of biochemical parameters in predicting the type of ventilatory support that is needed in order to properly manage severely ill COVID-19 patients.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal

          Abstract Objective To review and critically appraise published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at risk of being admitted to hospital for covid-19 pneumonia. Design Rapid systematic review and critical appraisal. Data sources PubMed and Embase through Ovid, Arxiv, medRxiv, and bioRxiv up to 24 March 2020. Study selection Studies that developed or validated a multivariable covid-19 related prediction model. Data extraction At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). Results 2696 titles were screened, and 27 studies describing 31 prediction models were included. Three models were identified for predicting hospital admission from pneumonia and other events (as proxy outcomes for covid-19 pneumonia) in the general population; 18 diagnostic models for detecting covid-19 infection (13 were machine learning based on computed tomography scans); and 10 prognostic models for predicting mortality risk, progression to severe disease, or length of hospital stay. Only one study used patient data from outside of China. The most reported predictors of presence of covid-19 in patients with suspected disease included age, body temperature, and signs and symptoms. The most reported predictors of severe prognosis in patients with covid-19 included age, sex, features derived from computed tomography scans, C reactive protein, lactic dehydrogenase, and lymphocyte count. C index estimates ranged from 0.73 to 0.81 in prediction models for the general population (reported for all three models), from 0.81 to more than 0.99 in diagnostic models (reported for 13 of the 18 models), and from 0.85 to 0.98 in prognostic models (reported for six of the 10 models). All studies were rated at high risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, and high risk of model overfitting. Reporting quality varied substantially between studies. Most reports did not include a description of the study population or intended use of the models, and calibration of predictions was rarely assessed. Conclusion Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that proposed models are poorly reported, at high risk of bias, and their reported performance is probably optimistic. Immediate sharing of well documented individual participant data from covid-19 studies is needed for collaborative efforts to develop more rigorous prediction models and validate existing ones. The predictors identified in included studies could be considered as candidate predictors for new models. Methodological guidance should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, studies should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. Systematic review registration Protocol https://osf.io/ehc47/, registration https://osf.io/wy245.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study

            Background Over 5,488,000 cases of coronavirus disease-19 (COVID-19) have been reported since December 2019. We aim to explore risk factors associated with mortality in COVID-19 patients and assess the use of D-dimer as a biomarker for disease severity and clinical outcome. Methods We retrospectively analyzed the clinical, laboratory, and radiological characteristics of 248 consecutive cases of COVID-19 in Renmin Hospital of Wuhan University, Wuhan, China from January 28 to March 08, 2020. Univariable and multivariable logistic regression methods were used to explore risk factors associated with in-hospital mortality. Correlations of D-dimer upon admission with disease severity and in-hospital mortality were analyzed. Receiver operating characteristic curve was used to determine the optimal cutoff level for D-dimer that discriminated those survivors versus non-survivors during hospitalization. Results Multivariable regression that showed D-dimer > 2.0 mg/L at admission was the only variable associated with increased odds of mortality [OR 10.17 (95% CI 1.10–94.38), P = 0.041]. D-dimer elevation (≥ 0.50 mg/L) was seen in 74.6% (185/248) of the patients. Pulmonary embolism and deep vein thrombosis were ruled out in patients with high probability of thrombosis. D-dimer levels significantly increased with increasing severity of COVID-19 as determined by clinical staging (Kendall’s tau-b = 0.374, P = 0.000) and chest CT staging (Kendall’s tau-b = 0.378, P = 0.000). In-hospital mortality rate was 6.9%. Median D-dimer level in non-survivors (n = 17) was significantly higher than in survivors (n = 231) [6.21 (3.79–16.01) mg/L versus 1.02 (0.47–2.66) mg/L, P = 0.000]. D-dimer level of > 2.14 mg/L predicted in-hospital mortality with a sensitivity of 88.2% and specificity of 71.3% (AUC 0.85; 95% CI = 0.77–0.92). Conclusions D-dimer is commonly elevated in patients with COVID-19. D-dimer levels correlate with disease severity and are a reliable prognostic marker for in-hospital mortality in patients admitted for COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis

              Aim COVID-19 clinical presentation is heterogeneous, ranging from asymptomatic to severe cases. While there are a number of early publications relating to risk factors for COVID-19 infection, low sample size and heterogeneity in study design impacted consolidation of early findings. There is a pressing need to identify the factors which predispose patients to severe cases of COVID-19. For rapid and widespread risk stratification, these factors should be easily obtainable, inexpensive, and avoid invasive clinical procedures. The aim of our study is to fill this knowledge gap by systematically mapping all the available evidence on the association of various clinical, demographic, and lifestyle variables with the risk of specific adverse outcomes in patients with COVID-19. Methods The systematic review was conducted using standardized methodology, searching two electronic databases (PubMed and SCOPUS) for relevant literature published between 1st January 2020 and 9th July 2020. Included studies reported characteristics of patients with COVID-19 while reporting outcomes relating to disease severity. In the case of sufficient comparable data, meta-analyses were conducted to estimate risk of each variable. Results Seventy-six studies were identified, with a total of 17,860,001 patients across 14 countries. The studies were highly heterogeneous in terms of the sample under study, outcomes, and risk measures reported. A large number of risk factors were presented for COVID-19. Commonly reported variables for adverse outcome from COVID-19 comprised patient characteristics, including age >75 (OR: 2.65, 95% CI: 1.81–3.90), male sex (OR: 2.05, 95% CI: 1.39–3.04) and severe obesity (OR: 2.57, 95% CI: 1.31–5.05). Active cancer (OR: 1.46, 95% CI: 1.04–2.04) was associated with increased risk of severe outcome. A number of common symptoms and vital measures (respiratory rate and SpO2) also suggested elevated risk profiles. Conclusions Based on the findings of this study, a range of easily assessed parameters are valuable to predict elevated risk of severe illness and mortality as a result of COVID-19, including patient characteristics and detailed comorbidities, alongside the novel inclusion of real-time symptoms and vital measurements.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Crit Care Med (Targu Mures)
                J Crit Care Med (Targu Mures)
                jccm
                jccm
                The Journal of Critical Care Medicine
                Sciendo
                2393-1809
                2393-1817
                14 November 2023
                October 2023
                : 9
                : 4
                : 262-270
                Affiliations
                Shri Ram Murti Smarak Institute of Medical Sciences , Bareilly, Uttar Pradesh, India
                Enzene Biosciences , Pune, Maharashtra, India
                Teerthanker Mahaveer Medical College and Research Centre , Moradabad, Uttar Pradesh, India
                Fergusson College , Pune, Maharashtra, India
                Article
                jccm-2023-0030
                10.2478/jccm-2023-0030
                10644279
                37969877
                b810455d-379a-4e3e-b284-c80052438bbc
                © 2023 Azmat Kamal Ansari et al., published by Sciendo

                This work is licensed under the Creative Commons Attribution 4.0 International License.

                History
                : 19 July 2023
                : 19 October 2023
                Page count
                Pages: 9
                Categories
                Research Article

                severely ill covid-19 patients,prognostic biochemical parameters,invasive ventilatory support,acute respiratory distress syndrome

                Comments

                Comment on this article