17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobinin vivo?

      , , ,
      British Journal of Haematology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="P2">The hallmark of sickle cell disease is the polymerization of sickle haemoglobin due to a point mutation in the β-globin gene ( <i>HBB</i>). Under low oxygen saturation, sickle haemoglobin assumes the tense (T-state) deoxygenated conformation that can form polymers, leading to rigid erythrocytes with impaired blood vessel transit, compounded or initiated by adhesion of erythrocytes to endothelium, neutrophils and platelets. This process results in vessel occlusion and ischaemia, with consequent acute pain, chronic organ damage, morbidity and mortality. Pharmacological agents that stabilize the higher oxygen affinity relaxed state (R-state) and/or destabilize the lower oxygen affinity T-state of haemoglobin have the potential to delay the sickling of circulating red cells by slowing polymerization kinetics. Relevant classes of agents include aromatic aldehydes, thiol derivatives, isothiocyanates and acyl salicylates derivatives. The aromatic aldehyde, 5-hydroxymethylfurfural (5-HMF) increases oxygen affinity of sickle haemoglobin and reduces hypoxia-induced sickling <i>in vitro</i> and protects sickle cell mice from effects of hypoxia. It has completed pre-clinical testing and has entered clinical trials as treatment for sickle cell disease. A related molecule, GBT440, has shown R-state stabilization and increased oxygen affinity in preclinical testing. Allosteric modifiers of haemoglobin as direct anti-sickling agents target the fundamental pathophysiological mechanism of sickle cell disease. </p>

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural.

          5-HMF is widely presented in foods and produced through the degradation of hexoses and Maillard reaction during heat treatment of foods containing reducing sugars and amino acids in an acid environment. However, controversial conclusions on the biological effects of 5-HMF have been drawn in previous studies. Therefore, the main aim of this study was to investigate the antioxidant and antiproliferative activities of 5-HMF. The 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) assay, the 1,1-diphenyl-2-picryhydrazyl (DPPH) assay, and the hemolysis assay induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were performed to evaluate the antioxidant capacity of 5-HMF. The results showed that 5-HMF exhibited novel antioxidant activity by scavenging the ABTS and DPPH free radicals and inhibited the AAPH-induced hemolysis in a dose-dependent manner. In the hemolysis assay, the reduction of ROS and MDA contents and the increase in enzyme activities of SOD, CAT, and GPx were found in erythrocytes pretreated with 5-HMF, which demonstrated that 5-HMF could prevent the peroxidation from the source to protect the erythrocytes. The morphological changes of erythrocytes was also verified by observation using atomic force microscopy. The inhibitory effect of 5-HMF on human cancer cell proliferation was investigated by MTT assay, flow cytometric analysis, and the TUNEL and DAPI costaining assay. The results showed that 5-HMF displayed higher antiproliferative activity on human melanoma A375 cells than other cell lines. Further investigation on the action mechanisms revealed that 5-HMF could induce A375 cell apoptosis and G0/G1 cell cycle arrest. The A375 cell apoptosis that 5-HMF induced was characterized by a TUNEL and DAPI costaining assay. These findings suggest that 5-HMF could be developed as a novel natural antioxidant with potential applications in cancer chemoprevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow.

            F Jensen (2009)
            Vertebrate red blood cells (RBCs) seem to serve tissue oxygen delivery in two distinct ways. Firstly, RBCs enable the adequate transport of O(2) between respiratory surfaces and metabolizing tissues by means of their high intracellular concentration of hemoglobin (Hb), appropriate allosteric interactions between Hb ligand-binding sites, and an adjustable intracellular chemical environment that allows fine-tuning of Hb O(2) affinity. Secondly, RBCs may sense tissue O(2) requirements via their degree of deoxygenation when they travel through the microcirculation and release vasodilatory compounds that enhance blood flow in hypoxic tissues. This latter function could be important in matching tissue O(2) delivery with local O(2) demand. Three main mechanisms by which RBCs can regulate their own distribution in the microcirculation have been proposed. These are: (1) deoxygenation-dependent release of ATP from RBCs, which stimulates production of nitric oxide (NO) and other vasodilators in the endothelium; (2) release of vasoactive NO from S-nitroso-Hb upon deoxygenation; and (3) reduction of naturally occurring nitrite to vasoactive NO by deoxygenated Hb. This Commentary inspects all three hypotheses with regard to their mechanisms, experimental evidence in their support and details that remain unresolved. The prime focus is on human/mammalian models, where most evidence for a role of erythrocyte ATP and NO release in blood flow regulation have accumulated. Information from other vertebrate groups is integrated in the analysis and used to discuss the evolutionary origin and general relevance of each hypothesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Red cell 2,3-diphosphoglycerate and oxygen affinity.

              The ease with which haemoglobin releases oxygen to the tissues is controlled by erythrocytic 2,3-diphosphoglycerate (2,3-DPG) such that an increase in the concentration of 2,3-DPG decreases oxygen affinity and vice versa. This review article describes the synthesis and breakdown of 2,3-DPG in the Embden-Meyerof pathway in red cells and briefly explains the molecular basis for its effect on oxygen affinity. Interaction of the effects of pH, Pco2, temperature and 2,3-DPG on the oxyhaemoglobin dissociation curve are discussed. The role of 2,3-DPG in the intraerythrocytic adaptation to various types of hypoxaemia is described. The increased oxygen affinity of blood stored in acid-citrate-dextrose (ACD) solution has been shown to be due to the decrease in the concentration of 2,3-DPG which occurs during storage. Methods of maintaining the concentration of 2,3-DPG in stored blood are described. The clinical implication of transfusion of elderly people, anaemic or pregnant patients with ACD stored blood to anaesthetically and surgically acceptable haemoglobin concentrations are discussed. Hypophosphataemia in association with parenteral feeding reduces 2,3-DPG concentration and so increases oxygen affinity. Since post-operative use of intravenous fluids such as dextrose or dextrose/saline also lead to hypophosphataemia, the addition of inorganic phosphorus to routine post-operative intravenous fluid may be advisable. Disorders of acid-base balance effect oxygen affinity not only by the direct effect of pH on the oxyhaemoglobin dissociation curve but by its control of 2,3-DPG metabolism. Management of acid-base disorders and pre-operative aklalinization of patients with sickle cell disease whould take account of this. It is known that anaesthesia alters the position of the oxyhaemoglobin dissociation curve, but it is thought that this is independent of any effects which anaesthetic agents may have on 2,3-DPG concentration. In vitro manipulation of 2,3-DPG concentration with steroids has already been carried out. Elucidation of the role of 2,3-DPG in the control of oxygen affinity may ultimately lead to iatrogenic manipulation of oxygen affinity in vivo.
                Bookmark

                Author and article information

                Journal
                British Journal of Haematology
                Br J Haematol
                Wiley-Blackwell
                00071048
                October 2016
                October 2016
                : 175
                : 1
                : 24-30
                Article
                10.1111/bjh.14264
                5035193
                27605087
                b7e9bd1f-a2d5-47e7-8532-3566f4dec292
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article