5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction of [ 177Lu]Lu-DOTA-TATE therapy response using the absorbed dose estimated from [ 177Lu]Lu-DOTA-TATE SPECT/CT in patients with metastatic neuroendocrine tumour

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Peptide receptor radionuclide therapy (PRRT) with [ 177Lu]Lu-DOTA-TATE has shown efficacy in patients with metastatic neuroendocrine tumours (NETs). Personalised dosimetry is crucial to optimise treatment outcomes and minimise adverse events. In this study, we investigated the correlation between the tumour-absorbed dose (TAD) estimated from [ 177Lu]Lu-DOTA-TATE SPECT/CT and the therapeutic response.

          Method

          A retrospective analysis was conducted on patients with advanced well-differentiated NETs grades 1–3 who underwent PRRT and exhibited greater uptake than liver on pre-therapeutic [ 68Ga]Ga-DOTA-TOC PET/CT. Target lesions were selected based on the RECIST 1.1 and PERCIST 1.0 criteria using [ 177Lu]Lu-DOTA-TATE SPECT/CT and pre-therapeutic contrast-enhanced CT scans. For anatomical image analysis, the sum of the longest diameter (SLD) of the target lesions was measured using the RECIST 1.1 criteria for patient-based analysis and the longest diameter (LD) of the target lesion using the RECIST-L criteria for lesion-based analysis. Standardised uptake values (SUVs) were measured on SPECT/CT images, and TADs were calculated based on the SUVs. Dosimetry was performed using a single SPECT/CT imaging time point at day 4–5 post-therapy. Statistical analyses were conducted to investigate correlations and determine the target lesion responses.

          Results

          Twenty patients with primary tumour sites and hepatic metastases were included. Fifty-five target lesions, predominantly located in the pancreas and liver, were analysed. The cumulative TAD (lesion-based analysis: r = 0.299–0.301, p = 0.025–0.027), but not the cycle 1 SUV (lesion-based analysis: r = 0.198–0.206, p = 0.131–0.147) or cycle 1 TAD (lesion-based analysis: r = 0.209–0.217, p = 0.112–0.126), exhibited a significant correlation with the change in LD of the target lesion. Binary logistic regression analysis identified the significance of the cumulative TAD in predicting disease control according to the RECIST-L criteria (odds ratio = 1.031–1.051, p = 0.024–0.026).

          Conclusions

          The cumulative TAD estimated from [ 177Lu]Lu-DOTA-TATE SPECT/CT revealed a significant correlation with change in LD, which was significantly higher for the cumulative TAD than for the cycle 1 SUV or TAD. A higher cumulative TAD was associated with disease control in the target lesion. However, considering the limitations inherent to a confined sample size, careful interpretation of these findings is required. Estimation of the cumulative TAD of [ 177Lu]Lu-DOTA-TATE therapy could guide the platform towards personalised therapy.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40658-024-00620-8.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).

          Assessment of the change in tumour burden is an important feature of the clinical evaluation of cancer therapeutics: both tumour shrinkage (objective response) and disease progression are useful endpoints in clinical trials. Since RECIST was published in 2000, many investigators, cooperative groups, industry and government authorities have adopted these criteria in the assessment of treatment outcomes. However, a number of questions and issues have arisen which have led to the development of a revised RECIST guideline (version 1.1). Evidence for changes, summarised in separate papers in this special issue, has come from assessment of a large data warehouse (>6500 patients), simulation studies and literature reviews. HIGHLIGHTS OF REVISED RECIST 1.1: Major changes include: Number of lesions to be assessed: based on evidence from numerous trial databases merged into a data warehouse for analysis purposes, the number of lesions required to assess tumour burden for response determination has been reduced from a maximum of 10 to a maximum of five total (and from five to two per organ, maximum). Assessment of pathological lymph nodes is now incorporated: nodes with a short axis of 15 mm are considered measurable and assessable as target lesions. The short axis measurement should be included in the sum of lesions in calculation of tumour response. Nodes that shrink to <10mm short axis are considered normal. Confirmation of response is required for trials with response primary endpoint but is no longer required in randomised studies since the control arm serves as appropriate means of interpretation of data. Disease progression is clarified in several aspects: in addition to the previous definition of progression in target disease of 20% increase in sum, a 5mm absolute increase is now required as well to guard against over calling PD when the total sum is very small. Furthermore, there is guidance offered on what constitutes 'unequivocal progression' of non-measurable/non-target disease, a source of confusion in the original RECIST guideline. Finally, a section on detection of new lesions, including the interpretation of FDG-PET scan assessment is included. Imaging guidance: the revised RECIST includes a new imaging appendix with updated recommendations on the optimal anatomical assessment of lesions. A key question considered by the RECIST Working Group in developing RECIST 1.1 was whether it was appropriate to move from anatomic unidimensional assessment of tumour burden to either volumetric anatomical assessment or to functional assessment with PET or MRI. It was concluded that, at present, there is not sufficient standardisation or evidence to abandon anatomical assessment of tumour burden. The only exception to this is in the use of FDG-PET imaging as an adjunct to determination of progression. As is detailed in the final paper in this special issue, the use of these promising newer approaches requires appropriate clinical validation studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            User's guide to correlation coefficients

            When writing a manuscript, we often use words such as perfect, strong, good or weak to name the strength of the relationship between variables. However, it is unclear where a good relationship turns into a strong one. The same strength of r is named differently by several researchers. Therefore, there is an absolute necessity to explicitly report the strength and direction of r while reporting correlation coefficients in manuscripts. This article aims to familiarize medical readers with several different correlation coefficients reported in medical manuscripts, clarify confounding aspects and summarize the naming practices for the strength of correlation coefficients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0

              The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings.
                Bookmark

                Author and article information

                Contributors
                kyi821209@naver.com
                Journal
                EJNMMI Phys
                EJNMMI Phys
                EJNMMI Physics
                Springer International Publishing (Cham )
                2197-7364
                5 February 2024
                5 February 2024
                December 2024
                : 11
                : 14
                Affiliations
                [1 ]GRID grid.267370.7, ISNI 0000 0004 0533 4667, Department of Nuclear Medicine, Asan Medical Center, , University of Ulsan College of Medicine, ; Seoul, Republic of Korea
                [2 ]Theranostics Center, Asan Cancer Institute, Asan Medical Center, ( https://ror.org/03s5q0090) Seoul, Republic of Korea
                [3 ]GRID grid.267370.7, ISNI 0000 0004 0533 4667, Department of Oncology, Asan Medical Center, , University of Ulsan College of Medicine, ; Seoul, Republic of Korea
                Author information
                http://orcid.org/0000-0002-4113-8351
                Article
                620
                10.1186/s40658-024-00620-8
                10844176
                38315270
                b65e0e9e-cb68-4814-ad42-b407634b8bda
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 July 2023
                : 29 January 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003625, Ministry of Health and Welfare;
                Award ID: HR18C0016
                Award ID: HR18C0016
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100005006, Asan Institute for Life Sciences, Asan Medical Center;
                Award ID: 2021IF0022
                Award ID: 2021IF0022
                Award Recipient :
                Categories
                Original Research
                Custom metadata
                © Springer Nature Switzerland AG 2024

                neuroendocrine tumour,[177lu]lu-dota-tate,spect/ct,dosimetry,absorbed dose

                Comments

                Comment on this article