7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First Report of the Clinical Use of a Commercial Automated System for Daily Patient QA Using EPID Exit Images

      research-article
      , PhD a , b , , , BS c , , MD a , b
      Advances in Radiation Oncology
      Elsevier

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To characterize the clinical utility of a new commercially available system for daily patient treatment quality assurance using electronic portal imaging detector (EPID) exit dose images.

          Methods and Materials

          The PerFRACTION automated quality assurance system was used to acquire integrated EPID images for every field every day for 60 treatment courses for 57 patients. Four thousand seventy-nine field values from 855 fractions were analyzed. Gamma passing rates were computed by the system for each field daily. Passing rates and pass-fail status were recorded by treatment modality (intensity modulated radiation therapy or 3-dimensional conformal radiotherapy) and location. When failures occurred, an attempt was made to determine the reason.

          Results

          Overall, 23% and 8% of fields failed at 2%/2 mm and 3%/3 mm, respectively. Forty-eight percent and 24% of fields failed at least once during the course of therapy for the 2 tolerance settings. Eighteen percent and 8% of all fractions failed and 60% and 28% of courses failed for the 2 tolerance settings, respectively. Eighteen percent of daily field passing rates were below 75% for 3%/3 mm tolerances. Intensity modulated radiation therapy had higher passing rates than 3-dimensional conformal radiation therapy. For 3%/3 mm tolerances, the fraction fail rate for the brain, extremity, and spine treatment sites failed the least, whereas the abdomen, chest, and head and neck failed more often. The most commonly identified reason for failure was body position change, but the reason for about half the daily field value failures could not be identified.

          Conclusions

          This is the first report of the clinical utility of a commercial daily patient treatment quality assurance system using EPID exit images. Variations were found in a clinically relevant percentage of images, and these potentially indicate important treatment variations. Reasons for failures are not always discernable. The system was practical to use because of automation and continues to be used for monitoring of nearly every patient in every field every day.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          A technique for the quantitative evaluation of dose distributions.

          The commissioning of a three-dimensional treatment planning system requires comparisons of measured and calculated dose distributions. Techniques have been developed to facilitate quantitative comparisons, including superimposed isodoses, dose-difference, and distance-to-agreement (DTA) distributions. The criterion for acceptable calculation performance is generally defined as a tolerance of the dose and DTA in regions of low and high dose gradients, respectively. The dose difference and DTA distributions complement each other in their useful regions. A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria. Although the composite distribution identifies locations where the calculation fails the preselected criteria, no numerical quality measure is provided for display or analysis. A technique is developed to unify dose distribution comparisons using the acceptance criteria. The measure of acceptability is the multidimensional distance between the measurement and calculation points in both the dose and the physical distance, scaled as a fraction of the acceptance criteria. In a space composed of dose and spatial coordinates, the acceptance criteria form an ellipsoid surface, the major axis scales of which are determined by individual acceptance criteria and the center of which is located at the measurement point in question. When the calculated dose distribution surface passes through the ellipsoid, the calculation passes the acceptance test for the measurement point. The minimum radial distance between the measurement point and the calculation points (expressed as a surface in the dose-distance space) is termed the gamma index. Regions where gamma > 1 correspond to locations where the calculation does not meet the acceptance criteria. The determination of gamma throughout the measured dose distribution provides a presentation that quantitatively indicates the calculation accuracy. Examples of a 6 MV beam penumbra are used to illustrate the gamma index.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Catching errors with in vivo EPID dosimetry.

            The potential for detrimental incidents and the ever increasing complexity of patient treatments emphasize the need for accurate dosimetric verification in radiotherapy. For this reason, all curative treatments are verified, either pretreatment or in vivo, by electronic portal imaging device (EPID) dosimetry in the Radiation Oncology Department of The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands. Since the clinical introduction of the method in January 2005 until August 2009, treatment plans of 4337 patients have been verified. Among these plans, 17 serious errors were detected that led to intervention. Due to their origin, nine of these errors would not have been detected with pretreatment verification. The method is illustrated in detail by the case of a plan transfer error detected in a 5 x 5 Gy intensity-modulated radiotherapy (IMRT) rectum treatment. The EPID reconstructed dose at the isocenter was 6.3% below the planned value. Investigation of the plan transfer chain revealed that due to a network transfer error, the plan was corrupted. 3D analysis of the acquired EPID data revealed serious underdosage of the planning target volume: On average 11.6%, locally up to 20%. This report shows the importance of in vivo (EPID) dosimetry for all treatment plans as well as the ability of the method to assess the dosimetric impact of deviations found.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions.

              Gantry-mounted megavoltage electronic portal imaging devices (EPIDs) have become ubiquitous on linear accelerators. WatchDog is a novel application of EPIDs, in which the image frames acquired during treatment are used to monitor treatment delivery in real time. We report on the preliminary use of WatchDog in a prospective study of cancer patients undergoing intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and identify the challenges of clinical adoption.
                Bookmark

                Author and article information

                Contributors
                Journal
                Adv Radiat Oncol
                Adv Radiat Oncol
                Advances in Radiation Oncology
                Elsevier
                2452-1094
                12 April 2019
                Oct-Dec 2019
                12 April 2019
                : 4
                : 4
                : 722-728
                Affiliations
                [a ]Radiation Oncology Department, University of Southern California, Los Angeles, California
                [b ]Radiation Oncology Program, Children's Hospital Los Angeles, Los Angeles, California
                [c ]Keck School of Medicine, University of Southern California, Los Angeles, California
                Author notes
                []Corresponding author. Radiation Oncology Program, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS#73, Los Angeles, CA 90027. aolch@ 123456chla.usc.edu
                Article
                S2452-1094(19)30047-8
                10.1016/j.adro.2019.04.001
                6817722
                31681865
                b5f6d881-467a-40fc-a2e9-381de569cace
                © 2019 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 1 November 2018
                : 28 February 2019
                : 8 April 2019
                Categories
                Patient Safety

                Comments

                Comment on this article