3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA metabarcoding of trawling bycatch reveals diversity and distribution patterns of sharks and rays in the central Tyrrhenian Sea

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conservation and management of chondrichthyans are becoming increasingly important, as many species are particularly vulnerable to fishing activities, primarily as bycatch, which leads to incomplete catch reporting, potentially hiding the impact on these organisms. Here, we aimed at implementing an eDNA metabarcoding approach to reconstruct shark and ray bycatch composition from 24 hauls of a bottom trawl fishing vessel in the central Mediterranean. eDNA samples were collected through the passive filtration of seawater by simple gauze rolls encapsulated in a probe (the “metaprobe”), which already showed great efficiency in detecting marine species from trace DNA in the environment. To improve molecular taxonomic detection, we enhanced the 12S target marker reference library by generating sequences for 14 Mediterranean chondrichthyans previously unrepresented in public repositories. DNA metabarcoding data correctly identifies almost all bycaught species and detected five additional species not present in the net, highlighting the potential of this method to detect rare species. Chondrichthyan diversity showed significant association with some key environmental variables (depth and distance from the coast) and the fishing effort, which are known to influence demersal communities. As DNA metabarcoding progressively positions itself as a staple tool for biodiversity monitoring, we expect that its melding with opportunistic, fishery-dependent surveys could reveal additional distribution features of threatened and elusive megafauna.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.

            K Katoh (2002)
            A multiple sequence alignment program, MAFFT, has been developed. The CPU time is drastically reduced as compared with existing methods. MAFFT includes two novel techniques. (i) Homo logous regions are rapidly identified by the fast Fourier transform (FFT), in which an amino acid sequence is converted to a sequence composed of volume and polarity values of each amino acid residue. (ii) We propose a simplified scoring system that performs well for reducing CPU time and increasing the accuracy of alignments even for sequences having large insertions or extensions as well as distantly related sequences of similar length. Two different heuristics, the progressive method (FFT-NS-2) and the iterative refinement method (FFT-NS-i), are implemented in MAFFT. The performances of FFT-NS-2 and FFT-NS-i were compared with other methods by computer simulations and benchmark tests; the CPU time of FFT-NS-2 is drastically reduced as compared with CLUSTALW with comparable accuracy. FFT-NS-i is over 100 times faster than T-COFFEE, when the number of input sequences exceeds 60, without sacrificing the accuracy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Confidence Limits on Phylogenies: An Approach Using the Bootstrap

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ICES Journal of Marine Science
                Oxford University Press (OUP)
                1054-3139
                1095-9289
                May 2023
                May 18 2023
                February 28 2023
                May 2023
                May 18 2023
                February 28 2023
                : 80
                : 4
                : 664-674
                Article
                10.1093/icesjms/fsad022
                b5c77930-379d-487c-8e3e-bf786d68e4db
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article