300
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Safety, Efficacy and Pharmacokinetics of AZD7442 (Tixagevimab/Cilgavimab) for Treatment of Mild-to-Moderate COVID-19: 15-Month Final Analysis of the TACKLE Trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          In the phase 3 TACKLE study, outpatient treatment with AZD7442 (tixagevimab/cilgavimab) was well tolerated and significantly reduced progression to severe disease or death through day 29 in adults with mild-to-moderate coronavirus disease 2019 (COVID-19) at the primary analysis. Here, we report data from the final analysis of the TACKLE study, performed after approximately 15 months’ follow-up.

          Methods

          Eligible participants were randomized 1:1 and dosed within 7 days of symptom onset with 600 mg intramuscular AZD7442 ( n = 456; 300 mg tixagevimab/300 mg cilgavimab) or placebo ( n = 454).

          Results

          Severe COVID-19 or death through day 29 occurred in 4.4% and 8.8% of participants who received AZD7442 or placebo, a relative risk reduction (RRR) of 50.4% [95% confidence interval (CI) 14.4, 71.3; p = 0.0096]; among participants dosed within 5 days of symptom onset, the RRR was 66.9% (95% CI 31.1, 84.1; p = 0.002). Death from any cause or hospitalization for COVID-19 complications or sequelae through day 169 occurred in 5.0% of participants receiving AZD7442 versus 9.7% receiving placebo, an RRR of 49.2% (95% CI 14.7, 69.8; p = 0.009). Adverse events occurred in 55.5% and 55.9% of participants who received AZD7442 or placebo, respectively, and were mostly mild or moderate in severity. Serious adverse events occurred in 10.2% and 14.4% of participants who received AZD7442 or placebo, respectively, and deaths occurred in 1.8% of participants in both groups. Serum concentration–time profiles recorded over 457 days were similar for AZD7442, tixagevimab, and cilgavimab, and were consistent with the extended half-life reported for AZD7442 (approx. 90 days).

          Conclusions

          AZD7442 reduced the risk of progression to severe COVID-19, hospitalization, and death, was well tolerated through 15 months, and exhibited predictable pharmacokinetics in outpatients with mild-to-moderate COVID-19. These data support the long-term safety of using long-acting monoclonal antibodies to treat COVID-19.

          Trial Registration

          Clinicaltrials.gov, NCT04723394. ( https://clinicaltrials.gov/study/NCT04723394.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s40121-024-00931-4.

          Plain Language Summary

          The body’s immune system produces proteins called antibodies that specifically target foreign substances such as viruses. AZD7442 is a combination of two antibodies (called tixagevimab and cilgavimab) that bind to the severe acute respiratory syndrome coronavirus 2 virus spike protein, preventing it from causing coronavirus disease 2019 (COVID-19). AZD7442 was designed to be “long-acting” and therefore provide prolonged protection against COVID-19 lasting several months from a single dose. It was tested in a clinical trial (TACKLE) to see if it could prevent people who had recently developed symptoms of COVID-19 from getting sicker, being hospitalized, or dying. Around 900 adults took part in this clinical trial. Half of this group were treated with a dose of AZD7442, given as two injections. The other half received a placebo (injections that look like the AZD7442 injections but contain no medicine). The effect of AZD7442 treatment against COVID-19 was monitored over 6 months, and safety was monitored over 15 months. Around the same percentage of participants in the trial reported side effects with AZD7442 and placebo, suggesting there were no safety issues with AZD7442. AZD7442 treatment reduced the risk of participants getting severe COVID-19 or dying from COVID-19 by approximately half, compared with the placebo group. Participants receiving AZD7442 also had fewer hospitalizations due to COVID-19 complications, compared with the placebo group. These results showed the long-term safety of using long-acting antibodies such as AZD7442 as a treatment for COVID-19.

          Graphical Abstract

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s40121-024-00931-4.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Potently neutralizing and protective human antibodies against SARS-CoV-2

          The COVID-19 pandemic is a major threat to global health 1 for which there are limited medical countermeasures 2,3 . Moreover, we currently lack a thorough understanding of mechanisms of humoral immunity 4 . From a larger panel of human monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein 5 , we identified several that exhibited potent neutralizing activity and fully blocked the receptor-binding domain of S (SRBD) from interacting with human ACE2 (hACE2). Competition-binding, structural, and functional studies allowed clustering of the mAbs into classes recognizing distinct epitopes on the SRBD as well as distinct conformational states of the S trimer. Potent neutralizing mAbs recognizing non-overlapping sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two mouse models of SARS-CoV-2 infection, passive transfer of either COV2-2196 or COV2-2130 alone or a combination of both mAbs protected mice from weight loss and reduced viral burden and inflammation in the lung. In addition, passive transfer of each of two of the most potently ACE2 blocking mAbs (COV2-2196 or COV2-2381) as monotherapy protected rhesus macaques from SARS-CoV-2 infection. These results identify protective epitopes on SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intramuscular AZD7442 (Tixagevimab–Cilgavimab) for Prevention of Covid-19

            Abstract Background The monoclonal-antibody combination AZD7442 is composed of tixagevimab and cilgavimab, two neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that have an extended half-life and have been shown to have prophylactic and therapeutic effects in animal models. Pharmacokinetic data in humans indicate that AZD7442 has an extended half-life of approximately 90 days. Methods In an ongoing phase 3 trial, we enrolled adults (≥18 years of age) who had an increased risk of an inadequate response to vaccination against coronavirus disease 2019 (Covid-19), an increased risk of exposure to SARS-CoV-2, or both. Participants were randomly assigned in a 2:1 ratio to receive a single dose (two consecutive intramuscular injections, one containing tixagevimab and the other containing cilgavimab) of either 300 mg of AZD7442 or saline placebo, and they were followed for up to 183 days in the primary analysis. The primary safety end point was the incidence of adverse events after a single dose of AZD7442. The primary efficacy end point was symptomatic Covid-19 (SARS-CoV-2 infection confirmed by means of reverse-transcriptase–polymerase-chain-reaction assay) occurring after administration of AZD7442 or placebo and on or before day 183. Results A total of 5197 participants underwent randomization and received one dose of AZD7442 or placebo (3460 in the AZD7442 group and 1737 in the placebo group). The primary analysis was conducted after 30% of the participants had become aware of their randomized assignment. In total, 1221 of 3461 participants (35.3%) in the AZD7442 group and 593 of 1736 participants (34.2%) in the placebo group reported having at least one adverse event, most of which were mild or moderate in severity. Symptomatic Covid-19 occurred in 8 of 3441 participants (0.2%) in the AZD7442 group and in 17 of 1731 participants (1.0%) in the placebo group (relative risk reduction, 76.7%; 95% confidence interval [CI], 46.0 to 90.0; P<0.001); extended follow-up at a median of 6 months showed a relative risk reduction of 82.8% (95% CI, 65.8 to 91.4). Five cases of severe or critical Covid-19 and two Covid-19–related deaths occurred, all in the placebo group. Conclusions A single dose of AZD7442 had efficacy for the prevention of Covid-19, without evident safety concerns. (Funded by AstraZeneca and the U.S. government; PROVENT ClinicalTrials.gov number, NCT04625725.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults.

              The study objective was to evaluate the pharmacokinetics (PK), antidrug antibody (ADA), and safety of motavizumab-YTE (motavizumab with amino acid substitutions M252Y/S254T/T256E [YTE]), an Fc-modified anti-respiratory syncytial virus (RSV) monoclonal antibody. Healthy adults (n = 31) were randomized to receive a single intravenous (i.v.) dose of motavizumab-YTE or motavizumab (0.3, 3, 15, or 30 mg/kg) and followed for 240 days. Clearance of motavizumab-YTE was significantly lower (71% to 86%) and the half-life (t1/2) was 2- to 4-fold longer than with motavizumab. However, similar peak concentrations and volume-of-distribution values, indicative of similar distribution properties, were seen at all dose levels. The sustained serum concentrations of motavizumab-YTE were fully functional, as shown by RSV neutralizing activity that persisted for 240 days with motavizumab-YTE versus 90 days postdose for motavizumab. Safety and incidence of ADA were comparable between groups. In this first study of an Fc-modified monoclonal antibody in humans, motavizumab-YTE was well tolerated and exhibited an extended half-life of up to 100 days. (This study has been registered at ClinicalTrials.gov under registration no. NCT00578682.).
                Bookmark

                Author and article information

                Contributors
                mark.esser@astrazeneca.com
                Journal
                Infect Dis Ther
                Infect Dis Ther
                Infectious Diseases and Therapy
                Springer Healthcare (Cheshire )
                2193-8229
                2193-6382
                25 February 2024
                25 February 2024
                March 2024
                : 13
                : 3
                : 521-533
                Affiliations
                [1 ]Nuffield Department of Primary Care Health Sciences, University of Oxford, ( https://ror.org/052gg0110) Oxford, UK
                [2 ]NIHR Applied Research Collaboration (ARC) Oxford Thames Valley, Oxford, UK
                [3 ]Department of Medicine, University College London, ( https://ror.org/02jx3x895) London, UK
                [4 ]Centro de Investigación en Cardiología y Metabolismo, Guadalajara, Jalisco Mexico
                [5 ]Köhler and Milstein Research/Méchnikov Project, Universidad Autonoma de Yucatan, ( https://ror.org/032p1n739) Mérida, Yucatán Mexico
                [6 ]GRID grid.418152.b, ISNI 0000 0004 0543 9493, Vaccines and Immune Therapies, BioPharmaceuticals R&D, , AstraZeneca, ; Boston, MA USA
                [7 ]GRID grid.417815.e, ISNI 0000 0004 5929 4381, Vaccines and Immune Therapies, BioPharmaceuticals R&D, , AstraZeneca, ; Cambridge, UK
                [8 ]GRID grid.418152.b, ISNI 0000 0004 0543 9493, Patient Safety, Chief Medical Office, R&D and Vaccines and Immune Therapies, , AstraZeneca, ; Gaithersburg, MD USA
                [9 ]Vaccines and Immune Therapies, BioPharmaceuticals R&D, Astrazeneca, 1 Medimmune Way, Gaithersburg, MD 20878 USA
                Article
                931
                10.1007/s40121-024-00931-4
                10965850
                38403865
                b5771625-be36-4924-8b5d-e0784a03679d
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 6 December 2023
                : 24 January 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100004325, AstraZeneca;
                Categories
                Original Research
                Custom metadata
                © Springer Healthcare Ltd., part of Springer Nature 2024

                tixagevimab,cilgavimab,covid-19,monoclonal antibody,clinical trial

                Comments

                Comment on this article