9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heme Degradation in Pathophysiology of and Countermeasures to Inflammation-Associated Disease

      review-article
      1 , 2 , 2 , *
      International Journal of Molecular Sciences
      MDPI
      heme degradation, heme oxygenase, diseases, therapies

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The class of tetrapyrrol “coordination complexes” called hemes are prosthetic group components of metalloproteins including hemoglobin, which provide functionality to these physiologically essential macromolecules by reversibly binding diatomic gasses, notably O 2, which complexes to ferrous (reduced/Fe(II)) iron within the heme porphyrin ring of hemoglobin in a pH- and PCO 2-dependent manner—thus allowing their transport and delivery to anatomic sites of their function. Here, pathologies associated with aberrant heme degradation are explored in the context of their underlying mechanisms and emerging medical countermeasures developed using heme oxygenase (HO), its major degradative enzyme and bioactive metabolites produced by HO activity. Tissue deposits of heme accumulate as a result of the removal of senescent or damaged erythrocytes from circulation by splenic macrophages, which destroy the cells and internal proteins, including hemoglobin, leaving free heme to accumulate, posing a significant toxicogenic challenge. In humans, HO uses NADPH as a reducing agent, along with molecular oxygen, to degrade heme into carbon monoxide (CO), free ferrous iron (FeII), which is sequestered by ferritin protein, and biliverdin, subsequently metabolized to bilirubin, a potent inhibitor of oxidative stress-mediated tissue damage. CO acts as a cellular messenger and augments vasodilation. Nevertheless, disease- or trauma-associated oxidative stressors sufficiently intense to overwhelm HO may trigger or exacerbate a wide range of diseases, including cardiovascular and neurologic syndromes. Here, strategies are described for counteracting the effects of aberrant heme degradation, with a particular focus on “bioflavonoids” as HO inducers, shown to cause amelioration of severe inflammatory diseases.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: not found
          • Article: not found

          K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification.

          (2002)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element.

            The transcription factor Nrf2, which normally exists in an inactive state as a consequence of binding to a cytoskeleton-associated protein Keap1, can be activated by redox-dependent stimuli. Alteration of the Nrf2-Keap1 interaction enables Nrf2 to translocate to the nucleus, bind to the antioxidant-responsive element (ARE) and initiate the transcription of genes coding for detoxifying enzymes and cytoprotective proteins. This response is also triggered by a class of electrophilic compounds including polyphenols and plant-derived constituents. Recently, the natural antioxidants curcumin and caffeic acid phenethyl ester (CAPE) have been identified as potent inducers of haem oxygenase-1 (HO-1), a redox-sensitive inducible protein that provides protection against various forms of stress. Here, we show that in renal epithelial cells both curcumin and CAPE stimulate the expression of Nrf2 in a concentration- and time-dependent manner. This effect was associated with a significant increase in HO-1 protein expression and haem oxygenase activity. From several lines of investigation we also report that curcumin (and, by inference, CAPE) stimulates ho-1 gene activity by promoting inactivation of the Nrf2-Keap1 complex, leading to increased Nrf2 binding to the resident ho-1 AREs. Moreover, using antibodies and specific inhibitors of the mitogen-activated protein kinase (MAPK) pathways, we provide data implicating p38 MAPK in curcumin-mediated ho-1 induction. Taken together, these results demonstrate that induction of HO-1 by curcumin and CAPE requires the activation of the Nrf2/ARE pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of Antioxidants and Natural Products in Inflammation

              Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                18 December 2020
                December 2020
                : 21
                : 24
                : 9698
                Affiliations
                [1 ]Advanced Biotherapeutics, London W2 1EB, UK; ddhaines2002@ 123456yahoo.com
                [2 ]Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
                Author notes
                [* ]Correspondence: tosaki.arpad@ 123456pharm.unideb.hu ; Tel./Fax: +36-52-255586
                Article
                ijms-21-09698
                10.3390/ijms21249698
                7766613
                33353225
                b4ca10dd-2002-4bbd-af77-dc248530117d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 October 2020
                : 16 December 2020
                Categories
                Review

                Molecular biology
                heme degradation,heme oxygenase,diseases,therapies
                Molecular biology
                heme degradation, heme oxygenase, diseases, therapies

                Comments

                Comment on this article