2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Natural selection versus neutral mutation in the evolution of subterranean life: A false dichotomy?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Throughout the evolutionary tree, there are gains and losses of morphological features, physiological processes, and behavioral patterns. Losses are perhaps nowhere so prominent as for subterranean organisms, which typically show reductions or losses of eyes and pigment. These losses seem easy to explain without recourse to natural selection. Its most modern form is the accumulation of selectively neutral, structurally reducing mutations. Selectionist explanations include direct selection, often involving metabolic efficiency in resource poor subterranean environments, and pleiotropy, where genes affecting eyes and pigment have other effects, such as increasing extra-optic sensory structures. This dichotomy echoes the debate in evolutionary biology in general about the sufficiency of natural selection as an explanation of evolution, e.g., Kimura’s neutral mutation theory. Tests of the two hypotheses have largely been one-sided, with data supporting that one or the other processes is occurring. While these tests have utilized a variety of subterranean organisms, the Mexican cavefish, Astyanax mexicanus, which has eyed extant ancestral-like surface fish conspecifics, is easily bred in the lab, and whose whole genome has been sequenced, is the favored experimental organism. However, with few exceptions, tests for selection versus neutral mutations contain limitations or flaws. Notably, these tests are often one sided, testing for the presence of one or the other process. In fact, it is most likely that both processes occur and make a significant contribution to the two most studied traits in cave evolution: eye and pigment reduction. Furthermore, narrow focus on neutral mutation hypothesis versus selection to explain cave-evolved traits often fails, at least in the simplest forms of these hypotheses, to account for aspects that are likely essential for understanding cave evolution: migration or epigenetic effects. Further, epigenetic effects and phenotypic plasticity have been demonstrated to play an important role in cave evolution in recent studies. Phenotypic plasticity does not by itself result in genetic change of course, but plasticity can reveal cryptic genetic variation which then selection can act on. These processes may result in a radical change in our thinking about evolution of subterranean life, especially the speed with which it may occur. Thus, perhaps it is better to ask what role the interaction of genes and environment plays, in addition to natural selection and neutral mutation.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme

          An adaptationist programme has dominated evolutionary thought in England and the United States during the past 40 years. It is based on faith in the power of natural selection as an optimizing agent. It proceeds by breaking an oragnism into unitary 'traits' and proposing an adaptive story for each considered separately. Trade-offs among competing selective demands exert the only brake upon perfection; non-optimality is thereby rendered as a result of adaptation as well. We criticize this approach and attempt to reassert a competing notion (long popular in continental Europe) that organisms must be analysed as integrated wholes, with Baupläne so constrained by phyletic heritage, pathways of development and general architecture that the constraints themselves become more interesting and more important in delimiting pathways of change than the selective force that may mediate change when it occurs. We fault the adaptationist programme for its failure to distinguish current utility from reasons for origin (male tyrannosaurs may have used their diminutive front legs to titillate female partners, but this will not explain why they got so small); for its unwillingness to consider alternatives to adaptive stories; for its reliance upon plausibility alone as a criterion for accepting speculative tales; and for its failure to consider adequately such competing themes as random fixation of alleles, production of non-adaptive structures by developmental correlation with selected features (allometry, pleiotropy, material compensation, mechanically forced correlation), the separability of adaptation and selection, multiple adaptive peaks, and current utility as an epiphenomenon of non-adaptive structures. We support Darwin's own pluralistic approach to identifying the agents of evolutionary change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypothalamic regulation of sleep and circadian rhythms.

            A series of findings over the past decade has begun to identify the brain circuitry and neurotransmitters that regulate our daily cycles of sleep and wakefulness. The latter depends on a network of cell groups that activate the thalamus and the cerebral cortex. A key switch in the hypothalamus shuts off this arousal system during sleep. Other hypothalamic neurons stabilize the switch, and their absence results in inappropriate switching of behavioural states, such as occurs in narcolepsy. These findings explain how various drugs affect sleep and wakefulness, and provide the basis for a wide range of environmental influences to shape wake-sleep cycles into the optimal pattern for survival.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evolutionary rate at the molecular level.

                Bookmark

                Author and article information

                Journal
                101633915
                42649
                Front Ecol Evol
                Front Ecol Evol
                Frontiers in ecology and evolution
                2296-701X
                21 June 2023
                2023
                25 January 2023
                27 November 2024
                : 11
                : 1080503
                Affiliations
                [1 ]Department of Environmental Science, American University, Washington, DC, United States
                [2 ]Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
                [3 ]Karst Research Institute at Research Centre of the Slovenian Academy of Sciences and Arts, Postojna, Slovenia
                Author notes
                [* ] CORRESPONDENCE David C. Culver, dculver@ 123456american.edu
                [†]

                These authors have contributed equally to this work and share first authorship

                Author contributions

                All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

                Article
                NIHMS1909010
                10.3389/fevo.2023.1080503
                11601988
                39606270
                b465af10-50b8-4cd3-9e26-8643be4b8390

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                Categories
                Article

                natural selection,neutral mutation,troglomorphy,adaptation,astyanax

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content427

                Cited by5

                Most referenced authors610