9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parametric Markov Chains: PCTL Complexity and Fraction-free Gaussian Elimination

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parametric Markov chains have been introduced as a model for families of stochastic systems that rely on the same graph structure, but differ in the concrete transition probabilities. The latter are specified by polynomial constraints for the parameters. Among the tasks typically addressed in the analysis of parametric Markov chains are (1) the computation of closed-form solutions for reachabilty probabilities and other quantitative measures and (2) finding symbolic representations of the set of parameter valuations for which a given temporal logical formula holds as well as (3) the decision variant of (2) that asks whether there exists a parameter valuation where a temporal logical formula holds. Our contribution to (1) is to show that existing implementations for computing rational functions for reachability probabilities or expected costs in parametric Markov chains can be improved by using fraction-free Gaussian elimination, a long-known technique for linear equation systems with parametric coefficients. Our contribution to (2) and (3) is a complexity-theoretic discussion of the model checking problem for parametric Markov chains and probabilistic computation tree logic (PCTL) formulas. We present an exponential-time algorithm for (2) and a PSPACE upper bound for (3). Moreover, we identify fragments of PCTL and subclasses of parametric Markov chains where (1) and (3) are solvable in polynomial time and establish NP-hardness for other PCTL fragments.

          Related collections

          Author and article information

          Journal
          07 September 2017
          Article
          10.4204/EPTCS.256.2
          1709.02093
          b3b361d8-8d50-4d81-a218-dce16dc29687

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          EPTCS 256, 2017, pp. 16-30
          In Proceedings GandALF 2017, arXiv:1709.01761
          cs.LO
          EPTCS

          Comments

          Comment on this article