3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          • Monitoring wildlife abundance across space and time is an essential task to study their population dynamics and inform effective management. Acoustic recording units are a promising technology for efficiently monitoring bird populations and communities. While current acoustic data models provide information on the presence/absence of individual species, new approaches are needed to monitor population abundance, ideally across large spatio‐temporal regions.

          • We present an integrated modelling framework that combines high‐quality but temporally sparse bird point count survey data with acoustic recordings. Our models account for imperfect detection in both data types and false positive errors in the acoustic data. Using simulations, we compare the accuracy and precision of abundance estimates using differing amounts of acoustic vocalizations obtained from a clustering algorithm, point count data, and a subset of manually validated acoustic vocalizations. We also use our modelling framework in a case study to estimate abundance of the Eastern Wood‐Pewee ( Contopus virens) in Vermont, USA.

          • The simulation study reveals that combining acoustic and point count data via an integrated model improves accuracy and precision of abundance estimates compared with models informed by either acoustic or point count data alone. Improved estimates are obtained across a wide range of scenarios, with the largest gains occurring when detection probability for the point count data is low. Combining acoustic data with only a small number of point count surveys yields estimates of abundance without the need for validating any of the identified vocalizations from the acoustic data. Within our case study, the integrated models provided moderate support for a decline of the Eastern Wood‐Pewee in this region.

          • Our integrated modelling approach combines dense acoustic data with few point count surveys to deliver reliable estimates of species abundance without the need for manual identification of acoustic vocalizations or a prohibitively expensive large number of repeated point count surveys. Our proposed approach offers an efficient monitoring alternative for large spatio‐temporal regions when point count data are difficult to obtain or when monitoring is focused on rare species with low detection probability.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          ESTIMATING SITE OCCUPANCY RATES WHEN DETECTION PROBABILITIES ARE LESS THAN ONE

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            General Methods for Monitoring Convergence of Iterative Simulations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              N-mixture models for estimating population size from spatially replicated counts.

              Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, I describe a class of models (N-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, N, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for N. Carroll and Lombard (1985, Journal of American Statistical Association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on N that is exploited by the N-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the N-mixture estimator compared to the Caroll and Lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Methods in Ecology and Evolution
                Methods Ecol Evol
                Wiley
                2041-210X
                2041-210X
                June 2021
                March 06 2021
                June 2021
                : 12
                : 6
                : 1040-1049
                Affiliations
                [1 ] Department of Forestry Michigan State University East Lansing MI USA
                [2 ] Ecology, Evolution, and Behavior Program Michigan State University East Lansing MI USA
                [3 ] Department of Geography, Environment, and Spatial Sciences Michigan State University East Lansing MI USA
                [4 ] Northeast Temperate Inventory and Monitoring Network National Park Service Woodstock VT USA
                [5 ] Department of Integrative Biology Michigan State University East Lansing MI USA
                Article
                10.1111/2041-210X.13578
                b2ef73d5-95ac-44d3-8bbe-fa42490f2384
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#am

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article