12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infection Eradication Criterion in a General Epidemic Model with Logistic Growth, Quarantine Strategy, Media Intrusion, and Quadratic Perturbation

      , ,
      Mathematics
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article explores and highlights the effect of stochasticity on the extinction behavior of a disease in a general epidemic model. Specifically, we consider a sophisticated dynamical model that combines logistic growth, quarantine strategy, media intrusion, and quadratic noise. The amalgamation of all these hypotheses makes our model more practical and realistic. By adopting new analytical techniques, we provide a sharp criterion for disease eradication. The theoretical results show that the extinction criterion of our general perturbed model is mainly determined by the parameters closely related to the linear and quadratic perturbations as well as other deterministic parameters of the system. In order to clearly show the strength of our new result in a practical way, we perform numerical examples using the case of herpes simplex virus (HSV) in the USA. We conclude that a great amount of quadratic noise minimizes the period of HSV and affects its eradication time.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          A Contribution to the Mathematical Theory of Epidemics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perspectives on the basic reproductive ratio.

            The basic reproductive ratio, R0, is defined as the expected number of secondary infections arising from a single individual during his or her entire infectious period, in a population of susceptibles. This concept is fundamental to the study of epidemiology and within-host pathogen dynamics. Most importantly, R0 often serves as a threshold parameter that predicts whether an infection will spread. Related parameters which share this threshold behaviour, however, may or may not give the true value of R0. In this paper we give a brief overview of common methods of formulating R0 and surrogate threshold parameters from deterministic, non-structured models. We also review common means of estimating R0 from epidemiological data. Finally, we survey the recent use of R0 in assessing emerging diseases, such as severe acute respiratory syndrome and avian influenza, a number of recent livestock diseases, and vector-borne diseases malaria, dengue and West Nile virus.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Population biology of infectious diseases: Part I

                Bookmark

                Author and article information

                Contributors
                Journal
                Mathematics
                Mathematics
                MDPI AG
                2227-7390
                November 2022
                November 11 2022
                : 10
                : 22
                : 4213
                Article
                10.3390/math10224213
                b2b29f75-d327-4dda-87c5-26a54a4c0ae0
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article