3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hypothesis of the Great Evolutionary Faunas is a foundational concept of macroevolutionary research postulating that three global mega-assemblages have dominated Phanerozoic oceans following abrupt biotic transitions. Empirical estimates of this large-scale pattern depend on several methodological decisions and are based on approaches unable to capture multiscale dynamics of the underlying Earth-Life System. Combining a multilayer network representation of fossil data with a multilevel clustering that eliminates the subjectivity inherent to distance-based approaches, we demonstrate that Phanerozoic oceans sequentially harbored four global benthic mega-assemblages. Shifts in dominance patterns among these global marine mega-assemblages were abrupt (end-Cambrian 494 Ma; end-Permian 252 Ma) or protracted (mid-Cretaceous 129 Ma), and represent the three major biotic transitions in Earth’s history. Our findings suggest that gradual ecological changes associated with the Mesozoic Marine Revolution triggered a protracted biotic transition comparable in magnitude to the end-Permian transition initiated by the most severe biotic crisis of the past 500 million years. Overall, our study supports the notion that both long-term ecological changes and major geological events have played crucial roles in shaping the mega-assemblages that dominated Phanerozoic oceans.

          Abstract

          Rojas et al. present a new multi-scale model that reveals the three major biotic transitions of the Phanerozoic fossil record. This new model supports the hypothesis that both long-term ecological changes and major geological events played crucial roles in shaping ocean mega-assemblages through the Phanerozoic.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Maps of random walks on complex networks reveal community structure

          To comprehend the multipartite organization of large-scale biological and social systems, we introduce an information theoretic approach that reveals community structure in weighted and directed networks. We use the probability flow of random walks on a network as a proxy for information flows in the real system and decompose the network into modules by compressing a description of the probability flow. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of >6,000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network-including physics, chemistry, molecular biology, and medicine-information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Mesozoic marine revolution: evidence from snails, predators and grazers

            Tertiary and Recent marine gastropods include in their ranks a complement of mechanically sturdy forms unknown in earlier epochs. Open coiling, planispiral coiling, and umbilici detract from shell sturdiness, and were commoner among Paleozoic and Early Mesozoic gastropods than among younger forms. Strong external sculpture, narrow elongate apertures, and apertural dentition promote resistance to crushing predation and are primarily associated with post-Jurassic mesogastropods, neogastropods, and neritaceans. The ability to remodel the interior of the shell, developed primarily in gastropods with a non-nacreous shell structure, has contributed greatly to the acquisition of these antipredatory features.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A factor analytic description of the Phanerozoic marine fossil record

              Data on numbers of marine families within 91 metazoan classes known from the Phanerozoic fossil record are analyzed. The distribution of the 2800 fossil families among the classes is very uneven, with most belonging to a small minority of classes. Similarly, the stratigraphic distribution of the classes is very uneven, with most first appearing early in the Paleozoic and with many of the smaller classes becoming extinct before the end of that era. However, despite this unevenness, aQ-mode factor analysis indicates that the structure of these data is rather simple. Only three factors are needed to account for more than 90% of the data. These factors are interpreted as reflecting the three great “evolutionary faunas” of the Phanerozoic marine record: a trilobite-dominated Cambrian fauna, a brachiopod-dominated later Paleozoic fauna, and a mollusc-dominated Mesozoic-Cenozoic, or “modern,” fauna. Lesser factors relate to slow taxonomic turnover within the major faunas through time and to unique aspects of particular taxa and times.
                Bookmark

                Author and article information

                Contributors
                alexis.rojas-briceno@umu.se
                Journal
                Commun Biol
                Commun Biol
                Communications Biology
                Nature Publishing Group UK (London )
                2399-3642
                8 March 2021
                8 March 2021
                2021
                : 4
                : 309
                Affiliations
                [1 ]GRID grid.12650.30, ISNI 0000 0001 1034 3451, Integrated Science Lab, Department of Physics, , Umeå University, ; Umeå, 90736 Sweden
                [2 ]GRID grid.15276.37, ISNI 0000 0004 1936 8091, Florida Museum of Natural History, Division of Invertebrate Paleontology, , University of Florida, ; Gainesville, 32611 FL USA
                Author information
                http://orcid.org/0000-0002-1063-9102
                http://orcid.org/0000-0001-9056-4149
                http://orcid.org/0000-0002-3599-9374
                http://orcid.org/0000-0002-7181-9940
                Article
                1805
                10.1038/s42003-021-01805-y
                7977041
                33686149
                b2a8b45d-68e2-443a-ae70-fd6655a9eac8
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 June 2020
                : 3 February 2021
                Funding
                Funded by: Martin Rosvall was supported by the Swedish Research Council, grant 2016-00796.
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                palaeontology,statistical methods
                palaeontology, statistical methods

                Comments

                Comment on this article