22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The subseafloor marine biosphere may be one of the largest reservoirs of microbial biomass on Earth and has recently been the subject of debate in terms of the composition of its microbial inhabitants, particularly on sediments from the Peru Margin. A metagenomic analysis was made by using whole-genome amplification and pyrosequencing of sediments from Ocean Drilling Program Site 1229 on the Peru Margin to further explore the microbial diversity and overall community composition within this environment. A total of 61.9 Mb of genetic material was sequenced from sediments at horizons 1, 16, 32, and 50 m below the seafloor. These depths include sediments from both primarily sulfate-reducing methane-generating regions of the sediment column. Many genes of the annotated genes, including those encoding ribosomal proteins, corresponded to those from the Chloroflexi and Euryarchaeota. However, analysis of the 16S small-subunit ribosomal genes suggests that Crenarchaeota are the abundant microbial member. Quantitative PCR confirms that uncultivated Crenarchaeota are indeed a major microbial group in these subsurface samples. These findings show that the marine subsurface is a distinct microbial habitat and is different from environments studied by metagenomics, especially because of the predominance of uncultivated archaeal groups.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          MEGAN analysis of metagenomic data.

          Metagenomics is the study of the genomic content of a sample of organisms obtained from a common habitat using targeted or random sequencing. Goals include understanding the extent and role of microbial diversity. The taxonomical content of such a sample is usually estimated by comparison against sequence databases of known sequences. Most published studies use the analysis of paired-end reads, complete sequences of environmental fosmid and BAC clones, or environmental assemblies. Emerging sequencing-by-synthesis technologies with very high throughput are paving the way to low-cost random "shotgun" approaches. This paper introduces MEGAN, a new computer program that allows laptop analysis of large metagenomic data sets. In a preprocessing step, the set of DNA sequences is compared against databases of known sequences using BLAST or another comparison tool. MEGAN is then used to compute and explore the taxonomical content of the data set, employing the NCBI taxonomy to summarize and order the results. A simple lowest common ancestor algorithm assigns reads to taxa such that the taxonomical level of the assigned taxon reflects the level of conservation of the sequence. The software allows large data sets to be dissected without the need for assembly or the targeting of specific phylogenetic markers. It provides graphical and statistical output for comparing different data sets. The approach is applied to several data sets, including the Sargasso Sea data set, a recently published metagenomic data set sampled from a mammoth bone, and several complete microbial genomes. Also, simulations that evaluate the performance of the approach for different read lengths are presented.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Prokaryotes: The unseen majority

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification.

              We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and phi29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified products can also be used for in vitro cloning, library construction, and other molecular biology applications.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 29 2008
                July 29 2008
                July 23 2008
                July 29 2008
                : 105
                : 30
                : 10583-10588
                Article
                10.1073/pnas.0709942105
                2492506
                18650394
                b10b795c-99b5-4319-bf34-6da6567e1bba
                © 2008
                History

                Comments

                Comment on this article