19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Some Geological Implications of Average Quaternary Glacial Conditions

      Quaternary Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analyses of Quaternary landscape evolution tend to focus on events associated with culminations of glacial and interglacial ages, but for most of Quaternary time, environments were intermediate in character. Average Quaternary glacial conditions, based on assessment of the marine isotope record, approximated those near the stage 2/stage 1 transition and during substages 5b and 5d; isotope stages 3 and 4 and substages 5a-d lie within one standard deviation of the mean value. Under average glacial conditions, ice sheets lying over northern North America and Europe were much more contracted than their full-glacial counterparts, and the distribution of mountain glaciers reflected a snowline depression of some 500 m. Geomorphic processes operating under average Quaternary conditions contributed importantly to landscape evolution. Examples of landscapes that may represent such average conditions include cirques and fluvial deposits of the Pacific Northwest, the fjords and strandflat of western Norway, and atolls of the tropical oceans. By examining the geologic record from the perspective of average conditions, rather than those of climatic extremes, added insight can be gained regarding the evolution of Quaternary landscapes.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The surface of the ice-age Earth.

            (1976)
            In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Oxygen isotopes, ice volume and sea level

                Bookmark

                Author and article information

                Journal
                applab
                Quaternary Research
                Quat. res.
                Elsevier BV
                0033-5894
                1096-0287
                November 1989
                January 2017
                : 32
                : 03
                : 245-261
                Article
                10.1016/0033-5894(89)90092-6
                b10a5136-dd0f-47c9-99dd-a5683ddcfe2c
                © 1989

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article