45
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calcaneal Quantitative Ultrasound as a Determinant of Bone Health Status: What Properties of Bone Does It Reflect?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quantitative ultrasound (QUS) has emerged as a convenient and popular screening tool for osteoporosis. This review aimed to provide basic information on the principle of QUS measurement and discuss the properties of bone reflected by QUS indices. QUS employed high frequency sound waves generated by the device to determine bone health status in humans. In vitro studies showed that QUS indices were significantly associated with bone mineral density (BMD), bone microarchitecture and mechanical parameters. In humans, QUS indices were found to be associated with BMD as well. In addition, QUS could discriminate subjects with and without fracture history and predict risk for future fracture. In conclusion, QUS is able to reflect bone quality and should be used in the screening of osteoporosis, especially in developing countries where dual-X-ray absorptiometry devices are less accessible to the general population.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques.

          Assessment of precision errors in bone mineral densitometry is important for characterization of a technique's ability to detect longitudinal skeletal changes. Short-term and long-term precision errors should be calculated as root-mean-square (RMS) averages of standard deviations of repeated measurements (SD) and standard errors of the estimate of changes in bone density with time (SEE), respectively. Inadequate adjustment for degrees of freedom and use of arithmetic means instead of RMS averages may cause underestimation of true imprecision by up to 41% and 25% (for duplicate measurements), respectively. Calculation of confidence intervals of precision errors based on the number of repeated measurements and the number of subjects assessed serves to characterize limitations of precision error assessments. Provided that precision error are comparable across subjects, examinations with a total of 27 degrees of freedom result in an upper 90% confidence limit of +30% of the mean precision error, a level considered sufficient for characterizing technique imprecision. We recommend three (or four) repeated measurements per individual in a subject group of at least 14 individuals to characterize short-term (or long-term) precision of a technique.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis.

            Meta-analysis of prospective studies shows that quantitative ultrasound of the heel using validated devices predicts risk of different types of fracture with similar performance across different devices and in elderly men and women. These predictions are independent of the risk estimates from hip DXA measures. Clinical utilisation of heel quantitative ultrasound (QUS) depends on its power to predict clinical fractures. This is particularly important in settings that have no access to DXA-derived bone density measurements. We aimed to assess the predictive power of heel QUS for fractures using a meta-analysis approach. We conducted an inverse variance random effects meta-analysis of prospective studies with heel QUS measures at baseline and fracture outcomes in their follow-up. Relative risks (RR) per standard deviation (SD) of different QUS parameters (broadband ultrasound attenuation [BUA], speed of sound [SOS], stiffness index [SI], and quantitative ultrasound index [QUI]) for various fracture outcomes (hip, vertebral, any clinical, any osteoporotic and major osteoporotic fractures) were reported based on study questions. Twenty-one studies including 55,164 women and 13,742 men were included in the meta-analysis with a total follow-up of 279,124 person-years. All four QUS parameters were associated with risk of different fracture. For instance, RR of hip fracture for 1 SD decrease of BUA was 1.69 (95% CI 1.43-2.00), SOS was 1.96 (95% CI 1.64-2.34), SI was 2.26 (95%CI 1.71-2.99) and QUI was 1.99 (95% CI 1.49-2.67). There was marked heterogeneity among studies on hip and any clinical fractures but no evidence of publication bias amongst them. Validated devices from different manufacturers predicted fracture risks with similar performance (meta-regression p values > 0.05 for difference of devices). QUS measures predicted fracture with a similar performance in men and women. Meta-analysis of studies with QUS measures adjusted for hip BMD showed a significant and independent association with fracture risk (RR/SD for BUA = 1.34 [95%CI 1.22-1.49]). This study confirms that heel QUS, using validated devices, predicts risk of different fracture outcomes in elderly men and women. Further research is needed for more widespread utilisation of the heel QUS in clinical settings across the world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative ultrasound methods to assess bone mineral status in children: technical characteristics, performance, and clinical application.

              Measurement of bone mineral status may be a useful tool in identifying the children who could be exposed to an increased risk of osteoporosis in adulthood. Dual energy x-ray absorptiometry and peripheral quantitative computed tomography may be used to this purpose, but the exposure to ionizing radiation is a limiting factor for preventive studies in large populations of children. In the last years, quantitative ultrasound (QUS) methods have been developed to assess bone mineral status in some peripheral skeletal sites such as calcaneus, phalanges of the hand, and tibia. QUS techniques are safe, easy to use, radiation-free, and devices are portable, so that they are particularly indicated to assess bone mineral status in children. This review will concentrate on the main methodological principles of ultrasounds and the QUS variables derived from their application to bone tissue, technical differences and performance of QUS methods, factors influencing QUS measurements, normative data and results obtained in children with disturbances of growth or affected by disorders of bone and mineral metabolism, including the assessment of fracture risk, and comparison among QUS, dual energy x-ray absorptiometry, and peripheral quantitative computed tomography methods.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2013
                25 October 2013
                : 10
                : 12
                : 1778-1783
                Affiliations
                Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia.
                Author notes
                ✉ Corresponding author: Professor Dr. Soelaiman Ima-Nirwana, M.B.B.S., PhD. Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. Tel: 03-40405514 Fax: 03-26938205 Email: imasoel@ 123456ppukm.ukm.edu.my .

                Conflict of Interest: The authors reported no conflict of interest.

                Article
                ijmsv10p1778
                10.7150/ijms.6765
                3837236
                24273451
                b102a5f9-91c4-4d35-859a-e2a7aaad9628
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 26 May 2013
                : 14 August 2013
                Categories
                Review

                Medicine
                bone,bone mineral density,calcaneus,quantitative ultrasound.
                Medicine
                bone, bone mineral density, calcaneus, quantitative ultrasound.

                Comments

                Comment on this article