20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long noncoding RNA DLEU2 predicts a poor prognosis and enhances malignant properties in laryngeal squamous cell carcinoma through the miR-30c-5p/PIK3CD/Akt axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long noncoding RNAs (lncRNAs) have been identified as potential prognostic tools and therapeutic biomarkers for a variety of human cancers. However, the functional roles and underlying mechanisms of key lncRNAs affecting laryngeal squamous cell carcinomas (LSCCs) are largely unknown. Here, we adopted a novel subpathway strategy based on the lncRNA-mRNA profiles from the Cancer Genome Atlas (TCGA) database and identified the lncRNA deleted in lymphocytic leukemia 2 (DLEU2) as an oncogene in the pathogenesis of LSCCs. We found that DLEU2 was significantly upregulated and predicted poor clinical outcomes in LSCC patients. In addition, ectopic overexpression of DLEU2 promoted the proliferation and migration of LSCC cells both in vivo and in vitro. Mechanistically, DLEU2 served as a competing endogenous RNA to regulate PIK3CD expression by sponging miR-30c-5p and subsequently activated the Akt signaling pathway. As a target gene of DLEU2, PIK3CD was also upregulated and could predict a poor prognosis in LSCC patients. In conclusion, we found that the novel LSCC-related gene DLEU2 enhances the malignant properties of LSCCs via the miR-30c-5p/PIK3CD/Akt axis. DLEU2 and its targeted miR-30c-5p/PIK3CD/Akt axis may represent valuable prognostic biomarkers and therapeutic targets for LSCCs.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long non-coding RNAs in cancer progression

          Recent large-scale transcriptome analyses have revealed that transcription is spread throughout the mammalian genomes, yielding large numbers of transcripts, including long non-coding RNAs (lncRNAs) with little or no protein-coding capacity. Dozens of lncRNAs have been identified as biologically significant. In many cases, lncRNAs act as key molecules in the regulation of processes such as chromatin remodeling, transcription, and post-transcriptional processing. Several lncRNAs (e.g., MALAT1, HOTAIR, and ANRIL) are associated with human diseases, including cancer. Those lncRNAs associated with cancer are often aberrantly expressed. Although the underlying molecular mechanisms by which lncRNAs regulate cancer development are unclear, recent studies have revealed that such aberrant expression of lncRNAs affects the progression of cancers. In this review, we highlight recent findings regarding the roles of lncRNAs in cancer biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2.

            Colorectal cancer (CRC) is the third most common cancer in the USA. MicroRNAs play important roles in the pathogenesis of CRC. In this study, we investigated the role of miR-30b in CRC and found that its expression was significantly lower in CRC tissues than that in normal tissues. We showed that a low expression level of miR-30b was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over-expression of miR-30b suppressed CRC cell proliferation in vitro and tumour growth in vivo. Specifically, miR-30b promoted G1 arrest and induced apoptosis. Moreover, KRAS, PIK3CD and BCL2 were identified as direct and functional targets of miR-30b. MiR-30b directly targeted the 3'-untranslated regions of their mRNAs and repressed their expression. This study revealed functional and mechanistic links between miRNA-30b and oncogene KRAS, PIK3CD and BCL2 in the pathogenesis of CRC. MiR-30b not only plays important roles in the regulation of cell proliferation and tumour growth in CRC, but is also a potential prognostic marker or therapeutic target for CRC. Restoration of miR-30b expression may represent a promising therapeutic approach for targeting malignant CRC. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells.

              Long non-coding RNAs (lncRNAs) represent a class of non-protein coding transcripts longer than 200 nucleotides that have aptitude for regulating gene expression at the transcriptional, post-transcriptional or epigenetic levels. In recent years, lncRNAs, which are believed to be the largest transcript class in the transcriptomes, have emerged as important players in a variety of biological processes. Notably, the identification and characterization of numerous lncRNAs in the past decade has revealed a role for these molecules in the regulation of cancer cell survival and death. It is likely that this class of non-coding RNA constitutes a critical contributor to the assorted known or/and unknown mechanisms of intrinsic or acquired drug resistance. Moreover, the expression of lncRNAs is altered in various patho-physiological conditions, including cancer. Therefore, lncRNAs represent potentially important targets in predicting or altering the sensitivity or resistance of cancer cells to various therapies. Here, we provide an overview on the molecular functions of lncRNAs, and discuss their impact and importance in cancer development, progression, and therapeutic outcome. We also provide a perspective on how lncRNAs may alter the efficacy of cancer therapy and the promise of lncRNAs as novel therapeutic targets for overcoming chemoresistance. A better understanding of the functional roles of lncRNA in cancer can ultimately translate to the development of novel, lncRNA-based intervention strategies for the treatment or prevention of drug-resistant cancer.
                Bookmark

                Author and article information

                Contributors
                zhaomqsd@163.com
                xiamingsdu@sohu.com
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                18 June 2020
                18 June 2020
                June 2020
                : 11
                : 6
                : 472
                Affiliations
                [1 ]ISNI 0000 0004 1769 9639, GRID grid.460018.b, Department of Otolaryngology, , Shandong Provincial Hospital Affiliated to Shandong First Medical University, ; No. 324 Jingwuweiqi Road, 250021 Jinan, Shandong Province China
                [2 ]ISNI 0000 0004 1769 9639, GRID grid.460018.b, Department of Pathology, , Shandong Provincial Hospital Affiliated to Shandong First Medical University, ; No. 324 Jingwuweiqi Road, 250021 Jinan, Shandong Province China
                Article
                2581
                10.1038/s41419-020-2581-2
                7303144
                32555190
                b0fb1cb5-3773-40e0-8355-106009920858
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 January 2020
                : 29 April 2020
                : 30 April 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Cell biology
                oncogenes,long non-coding rnas
                Cell biology
                oncogenes, long non-coding rnas

                Comments

                Comment on this article