36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Klebsiella pneumoniae infection biology: living to counteract host defences

      review-article
      ,
      FEMS Microbiology Reviews
      Oxford University Press
      Klebsiella, innate immunity, virulence

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an ‘urgent threat to human health’ by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host–pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.

          Abstract

          The human pathogen Klebsiella pneumoniae: a master puppeteer of manipulation of our body to counteract our defences.

          Related collections

          Most cited references199

          • Record: found
          • Abstract: found
          • Article: not found

          Defensins: antimicrobial peptides of innate immunity.

          Tomas Ganz (2003)
          The production of natural antibiotic peptides has emerged as an important mechanism of innate immunity in plants and animals. Defensins are diverse members of a large family of antimicrobial peptides, contributing to the antimicrobial action of granulocytes, mucosal host defence in the small intestine and epithelial host defence in the skin and elsewhere. This review, inspired by a spate of recent studies of defensins in human diseases and animal models, focuses on the biological function of defensins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular basis of bacterial outer membrane permeability revisited.

            Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.

              Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages, is a universal component of the flagellin-NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5-NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity. © 2011 Macmillan Publishers Limited. All rights reserved
                Bookmark

                Author and article information

                Journal
                FEMS Microbiol Rev
                FEMS Microbiol. Rev
                femsre
                FEMS Microbiology Reviews
                Oxford University Press
                0168-6445
                1574-6976
                18 November 2018
                March 2019
                18 November 2018
                : 43
                : 2
                : 123-144
                Affiliations
                [1]Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
                Author notes
                Corresponding author: Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK. Tel: +44-(0)-2890976357; E-mail: j.bengoechea@ 123456qub.ac.uk
                Author information
                http://orcid.org/0000-0002-9677-8751
                Article
                fuy043
                10.1093/femsre/fuy043
                6435446
                30452654
                aefa240a-bb6d-416c-bbcb-bdf3ad70ad8c
                © FEMS 2018.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 September 2018
                : 16 November 2018
                Page count
                Pages: 22
                Funding
                Funded by: Marie Curie Career Integration
                Award ID: PCIG13-GA-2013-618162
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Award ID: BB/L007223/1
                Award ID: BB/N00700X/1
                Award ID: BB/P006078/1
                Award ID: BB/P020194/1
                Funded by: Medical Research Council 10.13039/501100000265
                Award ID: MR/R005893/1
                Categories
                Review Article

                Microbiology & Virology
                klebsiella,innate immunity,virulence
                Microbiology & Virology
                klebsiella, innate immunity, virulence

                Comments

                Comment on this article