62
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Delaying the International Spread of Pandemic Influenza

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The recent emergence of hypervirulent subtypes of avian influenza has underlined the potentially devastating effects of pandemic influenza. Were such a virus to acquire the ability to spread efficiently between humans, control would almost certainly be hampered by limited vaccine supplies unless global spread could be substantially delayed. Moreover, the large increases that have occurred in international air travel might be expected to lead to more rapid global dissemination than in previous pandemics.

          Methods and Findings

          To evaluate the potential of local control measures and travel restrictions to impede global dissemination, we developed stochastic models of the international spread of influenza based on extensions of coupled epidemic transmission models. These models have been shown to be capable of accurately forecasting local and global spread of epidemic and pandemic influenza. We show that under most scenarios restrictions on air travel are likely to be of surprisingly little value in delaying epidemics, unless almost all travel ceases very soon after epidemics are detected.

          Conclusions

          Interventions to reduce local transmission of influenza are likely to be more effective at reducing the rate of global spread and less vulnerable to implementation delays than air travel restrictions. Nevertheless, under the most plausible scenarios, achievable delays are small compared with the time needed to accumulate substantial vaccine stocks.

          Abstract

          Air travel might contribute to the spread of influenza in future pandemics. However, this modelling study concluded that restrictions on air travel would not provide effective control.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Transmissibility of 1918 pandemic influenza

          The 1918 influenza pandemic killed 20–40 million people worldwide 1 , and is seen as a worst-case scenario for pandemic planning. Like other pandemic influenza strains, the 1918 A/H1N1 strain spread extremely rapidly. A measure of transmissibility and of the stringency of control measures required to stop an epidemic is the reproductive number, which is the number of secondary cases produced by each primary case 2 . Here we obtained an estimate of the reproductive number for 1918 influenza by fitting a deterministic SEIR (susceptible-exposed-infectious-recovered) model to pneumonia and influenza death epidemic curves from 45 US cities: the median value is less than three. The estimated proportion of the population with A/H1N1 immunity before September 1918 implies a median basic reproductive number of less than four. These results strongly suggest that the reproductive number for 1918 pandemic influenza is not large relative to many other infectious diseases 2 . In theory, a similar novel influenza subtype could be controlled. But because influenza is frequently transmitted before a specific diagnosis is possible and there is a dearth of global antiviral and vaccine stores, aggressive transmission reducing measures will probably be required. Supplementary information The online version of this article (doi:10.1038/nature03063) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic.

            The influenza pandemic of 1918-20 is recognized as having generally taken place in three waves, starting in the northern spring and summer of 1918. This pattern of three waves, however, was not universal: in some locations influenza seems to have persisted into or returned in 1920. The recorded statistics of influenza morbidity and mortality are likely to be a significant understatement. Limitations of these data can include nonregistration, missing records, misdiagnosis, and nonmedical certification, and may also vary greatly between locations. Further research has seen the consistent upward revision of the estimated global mortality of the pandemic, which a 1920s calculation put in the vicinity of 21.5 million. A 1991 paper revised the mortality as being in the range 24.7-39.3 million. This paper suggests that it was of the order of 50 million. However, it must be acknowledged that even this vast figure may be substantially lower than the real toll, perhaps as much as 100 percent understated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures.

              Severe acute respiratory syndrome (SARS) has been the first severe contagious disease to emerge in the 21st century. The available epidemic curves for SARS show marked differences between the affected regions with respect to the total number of cases and epidemic duration, even for those regions in which outbreaks started almost simultaneously and similar control measures were implemented at the same time. The authors developed a likelihood-based estimation procedure that infers the temporal pattern of effective reproduction numbers from an observed epidemic curve. Precise estimates for the effective reproduction numbers were obtained by applying this estimation procedure to available data for SARS outbreaks that occurred in Hong Kong, Vietnam, Singapore, and Canada in 2003. The effective reproduction numbers revealed that epidemics in the various affected regions were characterized by markedly similar disease transmission potentials and similar levels of effectiveness of control measures. In controlling SARS outbreaks, timely alerts have been essential: Delaying the institution of control measures by 1 week would have nearly tripled the epidemic size and would have increased the expected epidemic duration by 4 weeks.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                pmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                June 2006
                2 May 2006
                : 3
                : 6
                : e212
                Affiliations
                [1] 1Statistics, Modelling, and Bioinformatics Department, Centre for Infections, Health Protection Agency, London, United Kingdom
                Mexican National Institutes of Health Mexico
                Author notes
                * To whom correspondence should be addressed. E-mail: ben.cooper@ 123456hpa.org.uk

                Competing Interests: The authors have declared that no competing interests exist.

                Article
                05-PLME-RA-0668R1
                10.1371/journal.pmed.0030212
                1450020
                16640458
                ae9fe5ad-cb2a-4f3c-9c63-ae6a4cd9ab69
                Copyright: © 2006 Cooper et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 November 2005
                : 28 February 2006
                Categories
                Research Article
                Infectious Diseases
                Epidemiology/Public Health
                Health Policy
                Respiratory Medicine
                Infectious Diseases
                Public Health
                Health Policy
                Travel Medicine

                Medicine
                Medicine

                Comments

                Comment on this article