75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Stable Association of Virion with the Triple-gene-block Protein 3-based Complex of Bamboo mosaic virus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The triple-gene-block protein 3 (TGBp3) of Bamboo mosaic virus (BaMV) is an integral endoplasmic reticulum (ER) membrane protein which is assumed to form a membrane complex to deliver the virus intracellularly. However, the virus entity that is delivered to plasmodesmata (PD) and its association with TGBp3-based complexes are not known. Results from chemical extraction and partial proteolysis of TGBp3 in membrane vesicles revealed that TGBp3 has a right-side-out membrane topology; i.e., TGBp3 has its C-terminal tail exposed to the outer surface of ER. Analyses of the TGBp3-specific immunoprecipitate of Sarkosyl-extracted TGBp3-based complex revealed that TGBp1, TGBp2, TGBp3, capsid protein (CP), replicase and viral RNA are potential constituents of virus movement complex. Substantial co-fractionation of TGBp2, TGBp3 and CP, but not TGBp1, in the early eluted gel filtration fractions in which virions were detected after TGBp3-specific immunoprecipitation suggested that the TGBp2- and TGBp3-based complex is able to stably associate with the virion. This notion was confirmed by immunogold-labeling transmission electron microscopy (TEM) of the purified virions. In addition, mutational and confocal microscopy analyses revealed that TGBp3 plays a key role in virus cell-to-cell movement by enhancing the TGBp2- and TGBp3-dependent PD localization of TGBp1. Taken together, our results suggested that the cell-to-cell movement of potexvirus requires stable association of the virion cargo with the TGBp2- and TGBp3-based membrane complex and recruitment of TGBp1 to the PD by this complex.

          Author Summary

          Plant viruses spread their infectious entities from cell to cell via plasmodesmata (PD) through the assistance of virus-encoded movement proteins and host factors. Some RNA viruses encode three functionally coordinated movement proteins organized into a triple gene block (TGB) to facilitate their cell-to-cell movement. TGBp2 and TGBp3 are known to associate with the endoplasmic reticulum (ER) membrane and ER-derived vesicles. The ER- or vesicle-associated TGBp2 and TGBp3 presumably form a membrane complex to deliver the viruses. However, the identity of the “viral RNA cargo” and whether the cargo is able to associate with the TGBp2- and TGBp3-containing membrane complex during intracellular transport remain unclear for potex-like viruses. Taking advantage of an HA-tagged and a His-tagged TGBp3 construct of Bamboo mosaic virus (BaMV), we have been able to determine the membrane topology of TGBp3, isolate the TGBp3-based complex and detect the existence of a stable TGBp2-TGBp3-virion complex. Moreover, we have clarified that TGBp3 plays a key role in virus cell-to-cell movement by enhancing the TGBp2- and TGBp3-dependent PD localization of TGBp1. These results suggested that the cell-to-cell movement of potexvirus requires stable association of the virion cargo with the TGBp2- and TGBp3-containing membrane complex and recruitment of TGBp1 to the PD by this complex.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum

          A rapid and simple method for the isolation of membranes from subcellular organelles is described. The procedure consists of diluting the organelles in ice-cold 100 mM Na2CO3 followed by centrifugation to pellet the membranes. Closed vesicles are converted to open membrane sheets, and content proteins and peripheral membrane proteins are released in soluble form. Here we document the method by applying it to various subfractions of a rat liver microsomal fraction, prepared by continuous density gradient centrifugation according to Beaufay et al. (1974, J. Cell Biol. 61:213-231). The results confirm and extend those of previous investigators on the distribution of enzymes and proteins among the membranes of the smooth and rough endoplasmic reticulum. In the accompanying paper (1982, J. Cell Biol. 93:103-110) the procedure is applied to peroxisomes and mitochondria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement.

            Remorins (REMs) are proteins of unknown function specific to vascular plants. We have used imaging and biochemical approaches and in situ labeling to demonstrate that REM clusters at plasmodesmata and in approximately 70-nm membrane domains, similar to lipid rafts, in the cytosolic leaflet of the plasma membrane. From a manipulation of REM levels in transgenic tomato (Solanum lycopersicum) plants, we show that Potato virus X (PVX) movement is inversely related to REM accumulation. We show that REM can interact physically with the movement protein TRIPLE GENE BLOCK PROTEIN1 from PVX. Based on the localization of REM and its impact on virus macromolecular trafficking, we discuss the potential for lipid rafts to act as functional components in plasmodesmata and the plasma membrane.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Storage of competent cells for Agrobacterium transformation.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2013
                June 2013
                6 June 2013
                : 9
                : 6
                : e1003405
                Affiliations
                [1 ]Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
                [2 ]Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China
                [3 ]Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
                [4 ]Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China
                IBMP CNRS Université de Strasbourg, France
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YLC YJH YHT BYC. Performed the experiments: YLC YJH YHT. Analyzed the data: YLC YJH YHT YHH BYC. Contributed reagents/materials/analysis tools: YLC YJH YHT HTH JYY CHW NSL MM YHH BYC. Wrote the paper: YLC BYC.

                Article
                PPATHOGENS-D-12-02405
                10.1371/journal.ppat.1003405
                3675025
                23754943
                ae5fa523-d68b-447d-858f-257a4ca6efb7
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 September 2012
                : 22 April 2013
                Page count
                Pages: 19
                Funding
                This research was supported by National Science Council ( http://web1.nsc.gov.tw/) of Republic of China Grant NSC 99-2313-B-005-019-MY3. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Macromolecular Assemblies
                Proteins
                Microbiology
                Virology
                Viral Transmission and Infection
                Viruslike Particles
                Plant Microbiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article