33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis

      , ,
      Nature Reviews Rheumatology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of native (not culture-expanded) joint-resident mesenchymal stem cells (MSCs) in the repair of joint damage in osteoarthritis (OA) is poorly understood. MSCs differ from bone marrow-residing haematopoietic stem cells in that they are present in multiple niches in the joint, including subchondral bone, cartilage, synovial fluid, synovium and adipose tissue. Research in experimental models suggests that the migration of MSCs adjacent to the joint cavity is crucial for chonodrogenesis during embryogenesis, and also shows that synovium-derived MSCs might be the primary drivers of cartilage repair in adulthood. In this Review, the available data is synthesized to produce a proposed model in which joint-resident MSCs with access to superficial cartilage are key cells in adult cartilage repair and represent important targets for manipulation in 'chondrogenic' OA, especially in the context of biomechanical correction of joints in early disease. Growing evidence links the expression of CD271, a nerve growth factor (NGF) receptor by native bone marrow-resident MSCs to a wider role for neurotrophins in OA pathobiology, the implications of which require exploration since anti-NGF therapy might worsen OA. Recognizing that joint-resident MSCs are comparatively abundant in vivo and occupy multiple niches will enable the optimization of single-stage therapeutic interventions for OA.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis cartilage histopathology: grading and staging.

          Current osteoarthritis (OA) histopathology assessment methods have difficulties in their utility for early disease, as well as their reproducibility and validity. Our objective was to devise a more useful method to assess OA histopathology that would have wide application for clinical and experimental OA assessment and would become recognized as the standard method. An OARSI Working Group deliberated on principles, standards and features for an OA cartilage pathology assessment system. Using current knowledge of the pathophysiology of OA morphologic features, a proposed system was presented at OARSI 2000. Subsequently, this was widely circulated for comments amongst experts in OA pathology. An OA cartilage pathology assessment system based on six grades, which reflect depth of the lesion and four stages reflecting extent of OA over the joint surface was developed. The OARSI cartilage OA histopathology grading system appears consistent and simple to apply. Further studies are required to confirm the system's utility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment.

            The identity of cells that establish the hematopoietic microenvironment (HME) in human bone marrow (BM), and of clonogenic skeletal progenitors found in BM stroma, has long remained elusive. We show that MCAM/CD146-expressing, subendothelial cells in human BM stroma are capable of transferring, upon transplantation, the HME to heterotopic sites, coincident with the establishment of identical subendothelial cells within a miniature bone organ. Establishment of subendothelial stromal cells in developing heterotopic BM in vivo occurs via specific, dynamic interactions with developing sinusoids. Subendothelial stromal cells residing on the sinusoidal wall are major producers of Angiopoietin-1 (a pivotal molecule of the HSC "niche" involved in vascular remodeling). Our data reveal the functional relationships between establishment of the HME in vivo, establishment of skeletal progenitors in BM sinusoids, and angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osteoarthritis.

              Osteoarthritis (OA) is the most common joint disorder, is associated with an increasing socioeconomic impact owing to the ageing population and mainly affects the diarthrodial joints. Primary OA results from a combination of risk factors, with increasing age and obesity being the most prominent. The concept of the pathophysiology is still evolving, from being viewed as cartilage-limited to a multifactorial disease that affects the whole joint. An intricate relationship between local and systemic factors modulates its clinical and structural presentations, leading to a common final pathway of joint destruction. Pharmacological treatments are mostly related to relief of symptoms and there is no disease-modifying OA drug (that is, treatment that will reduce symptoms in addition to slowing or stopping the disease progression) yet approved by the regulatory agencies. Identifying phenotypes of patients will enable the detection of the disease in its early stages as well as distinguish individuals who are at higher risk of progression, which in turn could be used to guide clinical decision making and allow more effective and specific therapeutic interventions to be designed. This Primer is an update on the progress made in the field of OA epidemiology, quality of life, pathophysiological mechanisms, diagnosis, screening, prevention and disease management.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Rheumatology
                Nat Rev Rheumatol
                Springer Nature
                1759-4790
                1759-4804
                November 9 2017
                November 9 2017
                :
                :
                Article
                10.1038/nrrheum.2017.182
                29118440
                ad7af6d6-f995-4af6-978a-6a4b8ed7a082
                © 2017
                History

                Comments

                Comment on this article