8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nowcasting Sexually Transmitted Infections in Chicago: Predictive Modeling and Evaluation Study Using Google Trends

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sexually transmitted infections (STIs) pose a significant public health challenge in the United States. Traditional surveillance systems are adversely affected by data quality issues, underreporting of cases, and reporting delays, resulting in missed prevention opportunities to respond to trends in disease prevalence. Search engine data can potentially facilitate an efficient and economical enhancement to surveillance reporting systems established for STIs.

          Objective

          We aimed to develop and train a predictive model using reported STI case data from Chicago, Illinois, and to investigate the model’s predictive capacity, timeliness, and ability to target interventions to subpopulations using Google Trends data.

          Methods

          Deidentified STI case data for chlamydia, gonorrhea, and primary and secondary syphilis from 2011-2017 were obtained from the Chicago Department of Public Health. The data set included race/ethnicity, age, and birth sex. Google Correlate was used to identify the top 100 correlated search terms with “STD symptoms,” and an autocrawler was established using Google Health Application Programming Interface to collect the search volume for each term. Elastic net regression was used to evaluate prediction accuracy, and cross-correlation analysis was used to identify timeliness of prediction. Subgroup elastic net regression analysis was performed for race, sex, and age.

          Results

          For gonorrhea and chlamydia, actual and predicted STI values correlated moderately in 2011 (chlamydia: r=0.65; gonorrhea: r=0.72) but correlated highly (chlamydia: r=0.90; gonorrhea: r=0.94) from 2012 to 2017. However, for primary and secondary syphilis, the high correlation was observed only for 2012 ( r=0.79), 2013 ( r=0.77), 2016 (0.80), and 2017 ( r=0.84), with 2011, 2014, and 2015 showing moderate correlations ( r=0.55-0.70). Model performance was the most accurate (highest correlation and lowest mean absolute error) for gonorrhea. Subgroup analyses improved model fit across disease and year. Regression models using search terms selected from the cross-correlation analysis improved the prediction accuracy and timeliness across diseases and years.

          Conclusions

          Integrating nowcasting with Google Trends in surveillance activities can potentially enhance the prediction and timeliness of outbreak detection and response as well as target interventions to subpopulations. Future studies should prospectively examine the utility of Google Trends applied to STI surveillance and response.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          Regularization and variable selection via the elastic net

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Google trends: a web-based tool for real-time surveillance of disease outbreaks.

            Google Flu Trends can detect regional outbreaks of influenza 7-10 days before conventional Centers for Disease Control and Prevention surveillance systems. We describe the Google Trends tool, explain how the data are processed, present examples, and discuss its strengths and limitations. Google Trends shows great promise as a timely, robust, and sensitive surveillance system. It is best used for surveillance of epidemics and diseases with high prevalences and is currently better suited to track disease activity in developed countries, because to be most effective, it requires large populations of Web search users. Spikes in search volume are currently hard to interpret but have the benefit of increasing vigilance. Google should work with public health care practitioners to develop specialized tools, using Google Flu Trends as a blueprint, to track infectious diseases. Suitable Web search query proxies for diseases need to be established for specialized tools or syndromic surveillance. This unique and innovative technology takes us one step closer to true real-time outbreak surveillance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Assessing the Methods, Tools, and Statistical Approaches in Google Trends Research: Systematic Review

              Background In the era of information overload, are big data analytics the answer to access and better manage available knowledge? Over the last decade, the use of Web-based data in public health issues, that is, infodemiology, has been proven useful in assessing various aspects of human behavior. Google Trends is the most popular tool to gather such information, and it has been used in several topics up to this point, with health and medicine being the most focused subject. Web-based behavior is monitored and analyzed in order to examine actual human behavior so as to predict, better assess, and even prevent health-related issues that constantly arise in everyday life. Objective This systematic review aimed at reporting and further presenting and analyzing the methods, tools, and statistical approaches for Google Trends (infodemiology) studies in health-related topics from 2006 to 2016 to provide an overview of the usefulness of said tool and be a point of reference for future research on the subject. Methods Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for selecting studies, we searched for the term “Google Trends” in the Scopus and PubMed databases from 2006 to 2016, applying specific criteria for types of publications and topics. A total of 109 published papers were extracted, excluding duplicates and those that did not fall inside the topics of health and medicine or the selected article types. We then further categorized the published papers according to their methodological approach, namely, visualization, seasonality, correlations, forecasting, and modeling. Results All the examined papers comprised, by definition, time series analysis, and all but two included data visualization. A total of 23.1% (24/104) studies used Google Trends data for examining seasonality, while 39.4% (41/104) and 32.7% (34/104) of the studies used correlations and modeling, respectively. Only 8.7% (9/104) of the studies used Google Trends data for predictions and forecasting in health-related topics; therefore, it is evident that a gap exists in forecasting using Google Trends data. Conclusions The monitoring of online queries can provide insight into human behavior, as this field is significantly and continuously growing and will be proven more than valuable in the future for assessing behavioral changes and providing ground for research using data that could not have been accessed otherwise.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Public Health Surveill
                JMIR Public Health Surveill
                JPH
                JMIR Public Health and Surveillance
                JMIR Publications (Toronto, Canada )
                2369-2960
                Oct-Dec 2020
                5 November 2020
                : 6
                : 4
                : e20588
                Affiliations
                [1 ] Ann & Robert H. Lurie Children's Hospital of Chicago Chicago, IL United States
                [2 ] Northwestern University Chicago, IL United States
                [3 ] School of Public Health University of Illinois at Chicago Chicago, IL United States
                [4 ] Chicago Department of Public Health Chicago, IL United States
                Author notes
                Corresponding Author: Amy Kristen Johnson akjohnson@ 123456luriechildrens.org
                Author information
                https://orcid.org/0000-0002-4247-455X
                https://orcid.org/0000-0002-0553-1340
                https://orcid.org/0000-0002-2683-7138
                https://orcid.org/0000-0002-7926-2489
                Article
                v6i4e20588
                10.2196/20588
                7677015
                33151162
                abb7b39e-fa69-421e-90e4-593211879073
                ©Amy Kristen Johnson, Runa Bhaumik, Irina Tabidze, Supriya D Mehta. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 05.11.2020.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this copyright and license information must be included.

                History
                : 22 May 2020
                : 6 July 2020
                : 26 August 2020
                : 1 September 2020
                Categories
                Original Paper
                Original Paper

                health information technology,sexually transmitted infections,surveillance,infoveillance,infodemiology,google trends

                Comments

                Comment on this article