0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential Effects of a Full and Biased Ghrelin Receptor Agonist in a Mouse Kindling Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ghrelin system has received substantial recognition as a potential target for novel anti-seizure drugs. Ghrelin receptor (ghrelin-R) signaling is complex, involving Gα q/11, Gα i/o, Gα 12/13, and β-arrestin pathways. In this study, we aimed to deepen our understanding regarding signaling pathways downstream the ghrelin-R responsible for mediating anticonvulsive effects in a kindling model. Mice were administered the proconvulsive dopamine 1 receptor-agonist, SKF81297, to gradually induce a kindled state. Prior to every SKF81297 injection, mice were treated with a ghrelin-R full agonist (JMV-1843), a Gα q and Gα 12 biased ligand unable to recruit β-arrestin (YIL781), a ghrelin-R antagonist (JMV-2959), or saline. Mice treated with JMV-1843 had fewer and less severe seizures compared to saline-treated controls, while mice treated with YIL781 experienced longer and more severe seizures. JMV-2959 treatment did not lead to differences in seizure severity and number. Altogether, these results indicate that the Gα q or Gα 12 signaling pathways are not responsible for mediating JMV-1843′s anticonvulsive effects and suggest a possible involvement of β-arrestin signaling in the anticonvulsive effects mediated by ghrelin-R modulation.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Common structural basis for constitutive activity of the ghrelin receptor family.

          Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand-independent signaling activity. The structurally homologous motilin receptor served as a constitutively silent control; upon agonist stimulation, however, it signaled with a similar efficacy to the three related receptors. The constitutive activity of the ghrelin receptor and of neurotensin receptor 2 through the G(q), phospholipase C pathway was approximately 50% of their maximal capacity as determined through inositol phosphate accumulation. These two receptors also showed very high constitutive activity in activation of cAMP response element-driven transcription. GPR39 displayed a clear but lower degree of constitutive activity through the inositol phosphate and cAMP response element pathways. In contrast, GPR39 signaled with the highest constitutive activity in respect of activation of serum response element-dependent transcription, in part, possibly, through G(12/13) and Rho kinase. Antibody feeding experiments demonstrated that the epitope-tagged ghrelin receptor was constitutively internalized but could be trapped at the cell surface by an inverse agonist, whereas GPR39 remained at the cell surface. Mutational analysis showed that the constitutive activity of both the ghrelin receptor and GPR39 could systematically be tuned up and down depending on the size and hydrophobicity of the side chain in position VI:16 in the context of an aromatic residue at VII:09 and a large hydrophobic residue at VII:06. It is concluded that the three ghrelin-like receptors display an unusually high degree of constitutive activity, the structural basis for which is determined by an aromatic cluster on the inner face of the extracellular ends of TMs VI and VII.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss.

            Ghrelin, through action on its receptor, GH secretagogue receptor type 1a (GHS-R1a), exerts a variety of metabolic functions including stimulation of appetite and weight gain and suppression of insulin secretion. In the present study, we examined the effects of novel small-molecule GHS-R1a antagonists on insulin secretion, glucose tolerance, and weight loss. Ghrelin dose-dependently suppressed insulin secretion from dispersed rat islets. This effect was fully blocked by a GHS-R1a antagonist. Consistent with this observation, a single oral dose of a GHS-R1a antagonist improved glucose homeostasis in an ip glucose tolerance test in rat. Improvement in glucose tolerance was attributed to increased insulin secretion. Daily oral administration of a GHS-R1a antagonist to diet-induced obese mice led to reduced food intake and weight loss (up to 15%) due to selective loss of fat mass. Pair-feeding experiments indicated that weight loss was largely a consequence of reduced food intake. The impact of a GHS-R1a antagonist on gastric emptying was also examined. Although the GHS-R1a antagonist modestly delayed gastric emptying at the highest dose tested (10 mg/kg), delayed gastric emptying does not appear to be a requirement for weight loss because lower doses produced weight loss without an effect on gastric emptying. Consistent with the hypothesis that ghrelin regulates feeding centrally, the anorexigenic effects of potent GHS-R1a antagonists in mice appeared to correspond with their brain exposure. These observations demonstrate that GHS-R1a antagonists have the potential to improve the diabetic condition by promoting glucose-dependent insulin secretion and promoting weight loss.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hippocampal Dopamine/DRD1 Signaling Dependent on the Ghrelin Receptor.

              The ghrelin receptor (GHSR1a) and dopamine receptor-1 (DRD1) are coexpressed in hippocampal neurons, yet ghrelin is undetectable in the hippocampus; therefore, we sought a function for apo-GHSR1a. Real-time single-molecule analysis on hippocampal neurons revealed dimerization between apo-GHSR1a and DRD1 that is enhanced by DRD1 agonism. In addition, proximity measurements support formation of preassembled apo-GHSR1a:DRD1:Gαq heteromeric complexes in hippocampal neurons. Activation by a DRD1 agonist produced non-canonical signal transduction via Gαq-PLC-IP3-Ca(2+) at the expense of canonical DRD1 Gαs cAMP signaling to result in CaMKII activation, glutamate receptor exocytosis, synaptic reorganization, and expression of early markers of hippocampal synaptic plasticity. Remarkably, this pathway is blocked by genetic or pharmacological inactivation of GHSR1a. In mice, GHSR1a inactivation inhibits DRD1-mediated hippocampal behavior and memory. Our findings identify a previously unrecognized mechanism essential for DRD1 initiation of hippocampal synaptic plasticity that is dependent on GHSR1a, and independent of cAMP signaling.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                20 May 2019
                May 2019
                : 20
                : 10
                : 2480
                Affiliations
                [1 ]Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; an.buckinx@ 123456vub.be (A.B.); Yana.Van.Den.Herrewegen@ 123456vub.be (Y.V.D.H.); anouk.pierre@ 123456vub.be (A.P.); Eleonora.cottone@ 123456vub.be (E.C.); dimitri.de.bundel@ 123456vub.be (D.D.B.)
                [2 ]Max Mousseron Institute of Biomolecules UMR524, CNRS, University of Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 34090 Montpellier, France; khoubaib.bhs@ 123456gmail.com (K.B.H.S.); jean-alain.fehrentz@ 123456univ-montp1.fr (J.-A.F.)
                [3 ]Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; ron.kooijman@ 123456vub.be
                Author notes
                [* ]Correspondence: Ilse.smolders@ 123456vub.be
                Author information
                https://orcid.org/0000-0002-2313-2773
                https://orcid.org/0000-0002-6064-3118
                Article
                ijms-20-02480
                10.3390/ijms20102480
                6567032
                31137460
                aa21b9df-f02d-42e6-9f2b-f1186dfc26f3
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 April 2019
                : 15 May 2019
                Categories
                Article

                Molecular biology
                epilepsy,biased signaling,ghrelin receptor,jmv-1843,yil781,jmv-2959,β-arrestin
                Molecular biology
                epilepsy, biased signaling, ghrelin receptor, jmv-1843, yil781, jmv-2959, β-arrestin

                Comments

                Comment on this article