9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Illuminating the dark side of indoor oxidants

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A review of the current understanding of oxidants and their precursors in indoor environments.

          Abstract

          The chemistry of oxidants and their precursors (oxidants*) plays a central role in outdoor environments but its importance in indoor air remains poorly understood. Ozone (O 3) chemistry is important in some indoor environments and, until recently, ozone was thought to be the dominant oxidant indoors. There is now evidence that formation of the hydroxyl radical by photolysis of nitrous acid (HONO) and formaldehyde (HCHO) may be important indoors. In the past few years, high time-resolution measurements of oxidants* indoors have become more common and the importance of event-based release of oxidants* during activities such as cleaning has been proposed. Here we review the current understanding of oxidants* indoors, including drivers of the formation and loss of oxidants*, levels of oxidants* in indoor environments, and important directions for future research.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Ozone in indoor environments: concentration and chemistry.

          The concentration of indoor ozone depends on a number of factors, including the outdoor ozone concentration, air exchange rates, indoor emission rates, surface removal rates, and reactions between ozone and other chemicals in the air. Outdoor ozone concentrations often display strong diurnal variations, and this adds a dynamic excitation to the transport and chemical mechanisms at play. Hence, indoor ozone concentrations can vary significantly from hour-to-hour, day-to-day, and season-to-season, as well as from room-to-room and structure-to-structure. Under normal conditions, the half-life of ozone indoors is between 7 and 10 min and is determined primarily by surface removal and air exchange. Although reactions between ozone and most other indoor pollutants are thermodynamically favorable, in the majority of cases they are quite slow. Rate constants for reactions of ozone with the more commonly identified indoor pollutants are summarized in this article. They show that only a small fraction of the reactions occur at a rate fast enough to compete with air exchange, assuming typical indoor ozone concentrations. In the case of organic compounds, the "fast" reactions involve compounds with unsaturated carbon-carbon bonds. Although such compounds typically comprise less than 10% of indoor pollutants, their reactions with ozone have the potential to be quite significant as sources of indoor free radicals and multifunctional (-C=O, -COOH, -OH) stable compounds that are often quite odorous. The stable compounds are present as both gas phase and condensed phase species, with the latter contributing to the overall concentration of indoor submicron particles. Indeed, ozone/alkene reactions provide a link between outdoor ozone, outdoor particles and indoor particles. Indoor ozone and the products derived from reactions initiated by indoor ozone are potentially damaging to both human health and materials; more detailed explication of these impacts is an area of active investigation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Changes in indoor pollutants since the 1950s

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air.

              This study has used proton transfer reaction-mass spectrometry (PTR-MS) for direct air analyses of volatile products resulting from the reactions of ozone with human skin lipids. An initial series of small-scale in vitro and in vivo experiments were followed by experiments conducted with human subjects in a simulated office. The latter were conducted using realistic ozone mixing ratios (approximately 15 ppb with occupants present). Detected products included mono- and bifunctional compounds that contain carbonyl, carboxyl, or alpha-hydroxy ketone groups. Among these, three previously unreported dicarbonyls have been identified, and two previously unreported alpha-hydroxy ketones have been tentatively identified. The compounds detected in this study (excepting acetone) have been overlooked in surveys of indoor pollutants, reflecting the limitations of the analytical methods routinely used to monitor indoor air. The results are fully consistent with the Criegee mechanism for ozone reacting with squalene, the single most abundant unsaturated constituent of skin lipids, and several unsaturated fatty acid moieties in their free or esterified forms. Quantitative product analysis confirms that squalene is the major scavenger of ozone at the interface between room air and the human envelope. Reactions between ozone and human skin lipids reduce the mixing ratio of ozone in indoor air, but concomitantly increase the mixing ratios of volatile products and, presumably, skin surface concentrations of less volatile products. Some of the volatile products, especially the dicarbonyls, may be respiratory irritants. Some of the less volatile products may be skin irritants.
                Bookmark

                Author and article information

                Journal
                ESPICZ
                Environmental Science: Processes & Impacts
                Environ. Sci.: Processes Impacts
                Royal Society of Chemistry (RSC)
                2050-7887
                2050-7895
                August 14 2019
                2019
                : 21
                : 8
                : 1229-1239
                Affiliations
                [1 ]Department of Chemistry
                [2 ]York University
                [3 ]Canada
                [4 ]Syracuse University
                [5 ]USA
                [6 ]Department of Civil and Mineral Engineering
                [7 ]University of Toronto
                [8 ]Dalla Lana School of Public Health
                [9 ]University of Saskatchewan
                Article
                10.1039/C9EM00111E
                31173015
                a99dd9ad-ecba-4239-9188-bd5af909f840
                © 2019

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article