1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Could theropod dinosaurs have evolved to a human level of intelligence?

      1
      Journal of Comparative Neurology
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references269

          • Record: found
          • Abstract: found
          • Article: not found

          A multi-modal parcellation of human cerebral cortex

          Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal ‘fingerprint’ of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Distributed Hierarchical Processing in the Primate Cerebral Cortex

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A tension-based theory of morphogenesis and compact wiring in the central nervous system.

              Many structural features of the mammalian central nervous system can be explained by a morphogenetic mechanism that involves mechanical tension along axons, dendrites and glial processes. In the cerebral cortex, for example, tension along axons in the white matter can explain how and why the cortex folds in a characteristic species-specific pattern. In the cerebellum, tension along parallel fibres can explain why the cortex is highly elongated but folded like an accordion. By keeping the aggregate length of axonal and dendritic wiring low, tension should contribute to the compactness of neural circuitry throughout the adult brain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Comparative Neurology
                J of Comparative Neurology
                Wiley
                0021-9967
                1096-9861
                April 07 2023
                Affiliations
                [1 ]Department of Anatomy and Neurobiology University of Tennessee Health Science Center Memphis Tennessee USA
                Article
                10.1002/cne.25458
                a7fbef02-c8f9-4ee6-b054-f26a96f3e422
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article