84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it.

          Results

          Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS.

          Conclusions

          Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the production profile of metabolites of industrial relevance.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          A new efficient gene disruption cassette for repeated use in budding yeast.

          The dominant kanr marker gene plays an important role in gene disruption experiments in budding yeast, as this marker can be used in a variety of yeast strains lacking the conventional yeast markers. We have developed a loxP-kanMX-loxP gene disruption cassette, which combines the advantages of the heterologous kanr marker with those from the Cre-lox P recombination system. This disruption cassette integrates with high efficiency via homologous integration at the correct genomic locus (routinely 70%). Upon expression of the Cre recombinase the kanMX module is excised by an efficient recombination between the loxP sites, leaving behind a single loxP site at the chromosomal locus. This system allows repeated use of the kanr marker gene and will be of great advantage for the functional analysis of gene families.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.

            Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in life-span. This extension was not observed in strains mutant for SIR2 (which encodes the silencing protein Sir2p) or NPT1 (a gene in a pathway in the synthesis of NAD, the oxidized form of nicotinamide adenine dinucleotide). These findings suggest that the increased longevity induced by calorie restriction requires the activation of Sir2p by NAD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone H4 lysine-16 acetylation regulates cellular lifespan

              Cells undergoing developmental processes are characterized by persistent non-genetic alterations in chromatin, termed epigenetic changes, represented by distinct patterns of DNA methylation and histone post-translational modifications. Sirtuins, a group of conserved NAD+-dependent deacetylases or ADP-ribosylases, promote longevity in diverse organisms; however, their molecular mechanisms in aging regulation remain poorly understood. Yeast Sir2, the founding member of the family, establishes and maintains chromatin silencing by removing H4 lysine 16 acetylation and bringing in other silencing proteins. Here we show an age-associated decrease in Sir2 protein abundance accompanied by an increase in H4 lysine 16 acetylation and loss of histones at specific subtelomeric regions in replicatively old yeast cells, which results in compromised transcriptional silencing at these loci. Antagonizing activities of Sir2 and Sas2, a histone acetyltransferase, regulate the replicative lifespan through histone H4 lysine 16 at subtelomeric regions. This pathway, distinct from existing aging models for yeast, may represent an evolutionarily conserved function of Sirtuins in regulation of replicative aging by maintenance of intact telomeric chromatin.
                Bookmark

                Author and article information

                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central
                1475-2859
                2013
                2 January 2013
                : 12
                : 1
                Affiliations
                [1 ]Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, Av. Agustín Escardino, 7, Paterna 46980, Spain
                [2 ]Departament de Bioquímica i Biologia Molecular, Universitat de València, Avda. Dr Moliner 50, Burjassot, 46100, Spain
                Article
                1475-2859-12-1
                10.1186/1475-2859-12-1
                3583744
                23282100
                a78dd169-40cf-454a-924a-88b5f9670f1c
                Copyright ©2013 Orozco et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 August 2012
                : 27 December 2012
                Categories
                Research

                Biotechnology
                yeast,chronological aging,stress,ethanol,sirtuins,hst3,pub1
                Biotechnology
                yeast, chronological aging, stress, ethanol, sirtuins, hst3, pub1

                Comments

                Comment on this article