4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanical experimentation of the gastrointestinal tract: a systematic review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gastrointestinal (GI) organs of the human body are responsible for transporting and extracting nutrients from food and drink, as well as excreting solid waste. Biomechanical experimentation of the GI organs provides insight into the mechanisms involved in their normal physiological functions, as well as understanding of how diseases can cause disruption to these. Additionally, experimental findings form the basis of all finite element (FE) modelling of these organs, which have a wide array of applications within medicine and engineering. This systematic review summarises the experimental studies that are currently in the literature ( n = 247) and outlines the areas in which experimentation is lacking, highlighting what is still required in order to more fully understand the mechanical behaviour of the GI organs. These include (i) more human data, allowing for more accurate modelling for applications within medicine, (ii) an increase in time-dependent studies, and (iii) more sophisticated in vivo testing methods which allow for both the layer- and direction-dependent characterisation of the GI organs. The findings of this review can also be used to identify experimental data for the readers’ own constitutive or FE modelling as the experimental studies have been grouped in terms of organ (oesophagus, stomach, small intestine, large intestine or rectum), test condition (ex vivo or in vivo), number of directions studied (isotropic or anisotropic), species family (human, porcine, feline etc.), tissue condition (intact wall or layer-dependent) and the type of test performed (biaxial tension, inflation–extension, distension (pressure-diameter), etc.). Furthermore, the studies that investigated the time-dependent (viscoelastic) behaviour of the tissues have been presented.

          Related collections

          Most cited references285

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic resonance elastography of liver: technique, analysis, and clinical applications.

          Many pathological processes cause marked changes in the mechanical properties of tissue. MR elastography (MRE) is a noninvasive MRI based technique for quantitatively assessing the mechanical properties of tissues in vivo. MRE is performed by using a vibration source to generate low frequency mechanical waves in tissue, imaging the propagating waves using a phase contrast MRI technique, and then processing the wave information to generate quantitative images showing mechanical properties such as tissue stiffness. Since its first description in 1995, published studies have explored many potential clinical applications including brain, thyroid, lung, heart, breast, and skeletal muscle imaging. However, the best-documented application to emerge has been the use of MRE to assess liver disease. Multiple studies have demonstrated that there is a strong correlation between MRE-measured hepatic stiffness and the stage of fibrosis at histology. The emerging literature indicates that MRE can serve as a safer, less expensive, and potentially more accurate alternative to invasive liver biopsy which is currently the gold standard for diagnosis and staging of liver fibrosis. This review describes the basic principles, technique of performing a liver MRE, analysis and calculation of stiffness, clinical applications, limitations, and potential future applications. Copyright © 2012 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surface area of the digestive tract - revisited.

            According to textbooks, the human gut mucosa measures 260-300 m(2), that is, in the order of a tennis court. However, the quantitative data are incomplete and sometimes conflicting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantitative shear wave ultrasound elastography: initial experience in solid breast masses

              Introduction Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Methods Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Results Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus greyscale BI-RADS performance figures were sensitivity: 97% vs 87%, specificity: 83% vs 78%, positive predictive value (PPV): 88% vs 84%, negative predictive value (NPV): 95% vs 82% and accuracy: 91% vs 83% respectively. These differences were not statistically significant. Conclusions Shear wave elastography gives quantitative and reproducible information on solid breast lesions with diagnostic accuracy at least as good as greyscale ultrasound with BI-RADS classification.
                Bookmark

                Author and article information

                Contributors
                mokarram.hossain@swansea.ac.uk
                Journal
                Biomech Model Mechanobiol
                Biomech Model Mechanobiol
                Biomechanics and Modeling in Mechanobiology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1617-7959
                1617-7940
                8 November 2023
                8 November 2023
                2024
                : 23
                : 1
                : 23-59
                Affiliations
                [1 ]Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, ( https://ror.org/053fq8t95) Swansea, SA1 8EN UK
                [2 ]GRID grid.5676.2, ISNI 0000000417654326, Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, ; 38000 Grenoble, France
                [3 ]Laboratoire d’Anatomie des Alpes Françaises, Université Grenoble Alpes, ( https://ror.org/02rx3b187) Grenoble, France
                Article
                1773
                10.1007/s10237-023-01773-8
                10901955
                37935880
                a6e765ee-8650-429c-9fb0-ff6b592975ad
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 March 2023
                : 10 September 2023
                Funding
                Funded by: Swansea University
                Award ID: SUSPRS
                Award ID: SUSPRS
                Award Recipient :
                Categories
                Review Paper
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2024

                Biophysics
                biomechanics,mechanical characterisation,mechanical properties,digestive system,soft tissues,constitutive modelling,finite element analysis

                Comments

                Comment on this article