24
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: the French multicentre MYCOVID study

      research-article
      , Prof, MD a , , * , , MD b , , , PharmD c , , Prof, MD c , , Prof, MD d , , Prof, MD d , , Prof, MD a , , MD a , , Prof, PharmD e , , Prof, MD e , , MD f , , MD f , , Prof, PharmD g , , Prof, MD g , , PhD h , , MD h , , Prof, PharmD i , , Pr, MD i , , MD b , , PharmD b , , PharmD j , , Prof, MD j , , MD k , , Prof, MD k , , MD l , , Prof, MD l , , Prof, MD m , , Prof, MD m , , MD n , , PharmD n , , Prof, PharmD o , , Prof, MD o , , Prof, MD p , , MD p , , Prof, MD q , , Prof, MD q , , PharmD r , , Prof, MD r , , MD c , , MD c , , MD c , , PharmD d , , Prof, PharmD a , , Prof, MD a , , Prof, MD a , , PharmD a , , PharmD a , , MD a , , PharmD a , , MD a , , PharmD e , , Prof, MD f , , MD g , , PhD g , , MD h , , MD h , , Prof, MD h , , PharmD h , , PharmD h , , PharmD i , , MD k , , MD m , , PharmD m , , PharmD p , , PhD q , , MD q , , PhD a , , Prof, MD a , , Prof, MD k , , , MD n , s , , **
      The Lancet. Respiratory Medicine
      Elsevier Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Patients with severe COVID-19 have emerged as a population at high risk of invasive fungal infections (IFIs). However, to our knowledge, the prevalence of IFIs has not yet been assessed in large populations of mechanically ventilated patients. We aimed to identify the prevalence, risk factors, and mortality associated with IFIs in mechanically ventilated patients with COVID-19 under intensive care.

          Methods

          We performed a national, multicentre, observational cohort study in 18 French intensive care units (ICUs). We retrospectively and prospectively enrolled adult patients (aged ≥18 years) with RT-PCR-confirmed SARS-CoV-2 infection and requiring mechanical ventilation for acute respiratory distress syndrome, with all demographic and clinical and biological follow-up data anonymised and collected from electronic case report forms. Patients were systematically screened for respiratory fungal microorganisms once or twice a week during the period of mechanical ventilation up to ICU discharge. The primary outcome was the prevalence of IFIs in all eligible participants with a minimum of three microbiological samples screened during ICU admission, with proven or probable (pr/pb) COVID-19-associated pulmonary aspergillosis (CAPA) classified according to the recent ECMM/ISHAM definitions. Secondary outcomes were risk factors of pr/pb CAPA, ICU mortality between the pr/pb CAPA and non-pr/pb CAPA groups, and associations of pr/pb CAPA and related variables with ICU mortality, identified by regression models. The MYCOVID study is registered with ClinicalTrials.gov, NCT04368221.

          Findings

          Between Feb 29 and July 9, 2020, we enrolled 565 mechanically ventilated patients with COVID-19. 509 patients with at least three screening samples were analysed (mean age 59·4 years [SD 12·5], 400 [79%] men). 128 (25%) patients had 138 episodes of pr/pb or possible IFIs. 76 (15%) patients fulfilled the criteria for pr/pb CAPA. According to multivariate analysis, age older than 62 years (odds ratio [OR] 2·34 [95% CI 1·39–3·92], p=0·0013), treatment with dexamethasone and anti-IL-6 (OR 2·71 [1·12–6·56], p=0·027), and long duration of mechanical ventilation (>14 days; OR 2·16 [1·14–4·09], p=0·019) were independently associated with pr/pb CAPA. 38 (7%) patients had one or more other pr/pb IFIs: 32 (6%) had candidaemia, six (1%) had invasive mucormycosis, and one (<1%) had invasive fusariosis. Multivariate analysis of associations with death, adjusted for candidaemia, for the 509 patients identified three significant factors: age older than 62 years (hazard ratio [HR] 1·71 [95% CI 1·26–2·32], p=0·0005), solid organ transplantation (HR 2·46 [1·53–3·95], p=0·0002), and pr/pb CAPA (HR 1·45 [95% CI 1·03–2·03], p=0·033). At time of ICU discharge, survival curves showed that overall ICU mortality was significantly higher in patients with pr/pb CAPA than in those without, at 61·8% (95% CI 50·0–72·8) versus 32·1% (27·7–36·7; p<0·0001).

          Interpretation

          This study shows the high prevalence of invasive pulmonary aspergillosis and candidaemia and high mortality associated with pr/pb CAPA in mechanically ventilated patients with COVID-19. These findings highlight the need for active surveillance of fungal pathogens in patients with severe COVID-19.

          Funding

          Pfizer.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Acute respiratory distress syndrome: the Berlin Definition.

          The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for Gastrointestinal Infection of SARS-CoV-2

            Since the novel coronavirus (SARS-CoV-2) was identified in Wuhan, China, at the end of 2019, the virus has spread to 32 countries, infecting more than 80,000 people and causing more than 2600 deaths globally. The viral infection causes a series of respiratory illnesses, including severe respiratory syndrome, indicating that the virus most likely infects respiratory epithelial cells and spreads mainly via respiratory tract from human to human. However, viral target cells and organs have not been fully determined, impeding our understanding of the pathogenesis of the viral infection and viral transmission routes. According to a recent case report, SARS-CoV-2 RNA was detected in a stool specimen, 1 raising the question of viral gastrointestinal infection and a fecal-oral transmission route. It has been proven that SARS-CoV-2 uses angiotensin-converting enzyme (ACE) 2 as a viral receptor for entry process. 2 ACE2 messenger RNA is highly expressed and stabilized by B0AT1 in gastrointestinal system, 3 , 4 providing a prerequisite for SARS-CoV-2 infection. To further investigate the clinical significance of SARS-CoV-2 RNA in feces, we examined the viral RNA in feces from 71 patients with SARS-CoV-2 infection during their hospitalizations. The viral RNA and viral nucleocapsid protein were examined in gastrointestinal tissues from 1 of the patients. Methods From February 1 to 14, 2020, clinical specimens, including serum, nasopharyngeal, and oropharyngeal swabs; urine; stool; and tissues from 73 hospitalized patients infected with SARS-CoV-2 were obtained in accordance with China Disease Control and Prevention guidelines and tested for SARS-CoV-2 RNA by using the China Disease Control and Prevention–standardized quantitative polymerase chain reaction assay. 5 Clinical characteristics of the 73 patients are shown in Supplementary Table 1. The esophageal, gastric, duodenal, and rectal tissues were obtained from 1 of the patients by using endoscopy. The patient’s clinical information is described in the Supplementary Case Clinical Information and Supplementary Table 2. Histologic staining (H&E) as well as viral receptor ACE2 and viral nucleocapsid staining were performed as described in the Supplementary Methods. The images of fluorescent staining were obtained by using laser scanning confocal microscopy (LSM880, Carl Zeiss MicroImaging, Oberkochen, Germany) and are shown in Figure 1 . This study was approved by the Ethics Committee of The Fifth Affiliated Hospital, Sun Yat-sen University, and all patients signed informed consent forms. Figure 1 Images of histologic and immunofluorescent staining of gastrointestinal tissues. Shown are images of histologic and immunofluorescent staining of esophagus, stomach, duodenum, and rectum. The scale bar in the histologic image represents 100 μm. The scale bar in the immunofluorescent image represents 20 μm. Results From February 1 to 14, 2020, among all of the 73 hospitalized patients infected with SARS-CoV-2, 39 (53.42%), including 25 male and 14 female patients, tested positive for SARS-CoV-2 RNA in stool, as shown in Supplementary Table 1. The age of patients with positive results for SARS-CoV-2 RNA in stool ranged from 10 months to 78 years old. The duration time of positive stool results ranged from 1 to 12 days. Furthermore, 17 (23.29%) patients continued to have positive results in stool after showing negative results in respiratory samples. Gastrointestinal endoscopy was performed on a patient as described in the Supplementary Case Clinical Information. As shown in Figure 1, the mucous epithelium of esophagus, stomach, duodenum, and rectum showed no significant damage with H&E staining. Infiltrate of occasional lymphocytes was observed in esophageal squamous epithelium. In lamina propria of the stomach, duodenum, and rectum, numerous infiltrating plasma cells and lymphocytes with interstitial edema were seen. Importantly, viral host receptor ACE2 stained positive mainly in the cytoplasm of gastrointestinal epithelial cells (Figure 1). We observed that ACE2 is rarely expressed in esophageal epithelium but is abundantly distributed in the cilia of the glandular epithelia. Staining of viral nucleocapsid protein was visualized in the cytoplasm of gastric, duodenal, and rectum glandular epithelial cell, but not in esophageal epithelium. The positive staining of ACE2 and SARS-CoV-2 was also observed in gastrointestinal epithelium from other patients who tested positive for SARS-CoV-2 RNA in feces (data not shown). Discussion In this article, we provide evidence for gastrointestinal infection of SARS-CoV-2 and its possible fecal-oral transmission route. Because viruses spread from infected to uninfected cells, 6 viral-specific target cells or organs are determinants of viral transmission routes. Receptor-mediated viral entry into a host cell is the first step of viral infection. Our immunofluorescent data showed that ACE2 protein, which has been proven to be a cell receptor for SARS-CoV-2, is abundantly expressed in the glandular cells of gastric, duodenal, and rectal epithelia, supporting the entry of SARS-CoV-2 into the host cells. ACE2 staining is rarely seen in esophageal mucosa, probably because the esophageal epithelium is mainly composed of squamous epithelial cells, which express less ACE2 than glandular epithelial cells. Our results of SARS-CoV-2 RNA detection and intracellular staining of viral nucleocapsid protein in gastric, duodenal, and rectal epithelia demonstrate that SARS-CoV-2 infects these gastrointestinal glandular epithelial cells. Although viral RNA was also detected in esophageal mucous tissue, absence of viral nucleocapsid protein staining in esophageal mucosa indicates low viral infection in esophageal mucosa. After viral entry, virus-specific RNA and proteins are synthesized in the cytoplasm to assemble new virions, 7 which can be released to the gastrointestinal tract. The continuous positive detection of viral RNA from feces suggests that the infectious virions are secreted from the virus-infected gastrointestinal cells. Recently, we and others have isolated infectious SARS-CoV-2 from stool (unpublished data), confirming the release of the infectious virions to the gastrointestinal tract. Therefore, fecal-oral transmission could be an additional route for viral spread. Prevention of fecal-oral transmission should be taken into consideration to control the spread of the virus. Our results highlight the clinical significance of testing viral RNA in feces by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) because infectious virions released from the gastrointestinal tract can be monitored by the test. According to the current Centers for Disease Control and Prevention guidance for the disposition of patients with SARS-CoV-2, the decision to discontinue transmission-based precautions for hospitalized patients with SARS-CoV-2 is based on negative results rRT-PCR testing for SARS-CoV-2 from at least 2 sequential respiratory tract specimens collected ≥24 hours apart. 8 However, in more than 20% of patients with SARS-CoV-2, we observed that the test result for viral RNA remained positive in feces, even after test results for viral RNA in the respiratory tract converted to negative, indicating that the viral gastrointestinal infection and potential fecal-oral transmission can last even after viral clearance in the respiratory tract. Therefore, we strongly recommend that rRT-PCR testing for SARS-CoV-2 from feces should be performed routinely in patients with SARS-CoV-2 and that transmission-based precautions for hospitalized patients with SARS-CoV-2 should continue if feces test results are positive by rRT-PCR testing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

              Background In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding UK Research and Innovation (Medical Research Council) and National Institute of Health Research.
                Bookmark

                Author and article information

                Journal
                Lancet Respir Med
                Lancet Respir Med
                The Lancet. Respiratory Medicine
                Elsevier Ltd.
                2213-2600
                2213-2619
                26 November 2021
                26 November 2021
                Affiliations
                [a ]CHU de Rennes, Rennes, France
                [b ]CHU Hôpital Européen Georges Pompidou–APHP, Paris, France
                [c ]CHU La Pitié-Salpêtrière–APHP, Paris, France
                [d ]CHU Henri Mondor–APHP, Créteil, France
                [e ]CHU Bichat–APHP, Paris, France
                [f ]CHU de Toulouse, Toulouse, France
                [g ]CHU de Lille, Lille, France
                [h ]Hospices Civils de Lyon, Lyon, France
                [i ]CHU de Nantes, Nantes, France
                [j ]CHU de Poitiers, Poitiers, France
                [k ]CHU Avicenne–APHP, Bobigny, France
                [l ]CHU Lariboisière Saint-Louis–APHP, Paris, France
                [m ]CHU de Grenoble, Grenoble, France
                [n ]CHU Necker Enfants Malades–APHP, Paris, France
                [o ]CHU de Tours, Tours, France
                [p ]CHU Saint-Antoine/Tenon–APHP, Paris, France
                [q ]CHU de Brest, Brest, France
                [r ]CHU de Strasbourg, Strasbourg, France
                [s ]Institut Pasteur, Paris, France
                Author notes
                [* ]Correspondence to: Prof Jean-Pierre Gangneux, Service de Parasitologie-Mycologie, CHU de Rennes, Rennes F-35000, France
                [** ]Dr Marie-Elisabeth Bougnoux, Département de Mycologie, Institut Pasteur, Paris F-75000, France
                [†]

                Contributed equally

                Article
                S2213-2600(21)00442-2
                10.1016/S2213-2600(21)00442-2
                8626095
                34843666
                a6396aa5-7249-4cda-b3aa-bda3afe5c0db
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Articles

                Comments

                Comment on this article