3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of population structure in Gulf of Mexico Seepiophila jonesi (Polychaeta, Siboglinidae) using cross-amplified microsatellite loci

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Vestimentiferan tubeworms are some of the most recognizable fauna found at deep-sea cold seeps, isolated environments where hydrocarbon rich fluids fuel biological communities. Several studies have investigated tubeworm population structure; however, much is still unknown about larval dispersal patterns at Gulf of Mexico (GoM) seeps. As such, researchers have applied microsatellite markers as a measure for documenting the transport of vestimentiferan individuals. In the present study, we investigate the utility of microsatellites to be cross-amplified within the escarpiid clade of seep vestimentiferans, by determining if loci originally developed for Escarpia spp. could be amplified in the GoM seep tubeworm, Seepiophila jonesi. Additionally, we determine if cross-amplified loci can reliably uncover the same signatures of high gene flow seen in a previous investigation of S. jonesi.

          Methods

          Seventy-seven S. jonesi individuals were collected from eight seep sites across the upper Louisiana slope (<1,000 m) in the GoM. Forty-eight microsatellite loci that were originally developed for Escarpia laminata (18 loci) and Escarpia southwardae (30 loci) were tested to determine if they were homologous and polymorphic in S. jonesi. Loci found to be both polymorphic and of high quality were used to test for significant population structuring in S. jonesi.

          Results

          Microsatellite pre-screening identified 13 (27%) of the Escarpia loci were homologous and polymorphic in S. jonesi, revealing that microsatellites can be amplified within the escarpiid clade of vestimentiferans. Our findings uncovered low levels of heterozygosity and a lack of genetic differentiation amongst S. jonesi from various sites and regions, in line with previous investigations that employed species-specific polymorphic loci on S. jonesi individuals retrieved from both the same and different seep sites. The lack of genetic structure identified from these populations supports the presence of significant gene flow via larval dispersal in mixed oceanic currents .

          Discussion

          The ability to develop “universal” microsatellites reduces the costs associated with these analyses and allows researchers to track and investigate a wider array of taxa, which is particularly useful for organisms living at inaccessible locations such as the deep sea. Our study highlights that non-species specific microsatellites can be amplified across large evolutionary distances and still yield similar findings as species-specific loci. Further, these results show that S. jonesi collected from various localities in the GoM represents a single panmictic population, suggesting that dispersal of lecithotrophic larvae by deep sea currents is sufficient to homogenize populations. These data are consistent with the high levels of gene flow seen in Escarpia spp., which advocates that differences in microhabitats of seep localities lead to variation in biogeography of separate species.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Genotyping errors: causes, consequences and solutions.

          Although genotyping errors affect most data and can markedly influence the biological conclusions of a study, they are too often neglected. Errors have various causes, but their occurrence and effect can be limited by considering these causes in the production and analysis of the data. Procedures that have been developed for dealing with errors in linkage studies, forensic analyses and non-invasive genotyping should be applied more broadly to any genetic study. We propose a protocol for estimating error rates and recommend that these measures be systemically reported to attest the reliability of published genotyping studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strategies for microsatellite isolation: a review.

            In the last few years microsatellites have become one of the most popular molecular markers used with applications in many different fields. High polymorphism and the relative ease of scoring represent the two major features that make microsatellites of large interest for many genetic studies. The major drawback of microsatellites is that they need to be isolated de novo from species that are being examined for the first time. The aim of the present paper is to review the various methods of microsatellite isolation described in the literature with the purpose of providing useful guidelines in making appropriate choices among the large number of currently available options. In addition, we propose a fast and easy protocol which is a combination of different published methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary dynamics of microsatellite DNA.

              Within the past decade microsatellites have developed into one of the most popular genetic markers. Despite the widespread use of microsatellite analysis, an integral picture of the mutational dynamics of microsatellite DNA is just beginning to emerge. Here, I review both generally agreed and controversial results about the mutational dynamics of microsatellite DNA. Microsatellites are short DNA sequence stretches in which a motif of one to six bases is tandemly repeated. It has been known for some time that these sequences can differ in repeat number among individuals. With the advent of polymerase chain reaction (PCR) technology this property of microsatellite DNA was converted into a highly versatile genetic marker (Litt and Luty 1989; Tautz 1989; Weber and May 1989). Polymerase chain reaction products of different length can be amplified with primers flanking the variable microsatellite region. Due to the availability of high-throughput capillary sequencers or mass spectrography the sizing of alleles is no longer a bottleneck in microsatellite analysis. The almost random distribution of microsatellites and their high level of polymorphism greatly facilitated the construction of genetic maps (Dietrich et al. 1994; Dib et al. 1996) and enabled subsequent positional cloning of several genes. Almost at the same time, microsatellites were established as the marker of choice for the identification of individuals and paternity testing. The high sensitivity of PCR-based microsatellite analysis was not only of great benefit for forensics, but opened completely new research areas, such as the analysis of samples with limited DNA amounts (e.g., many social insects) or degraded DNA (e.g., feces, museum material) (Schlötterer and Pemberton 1998). More recently, microsatellite analysis has also been employed in population genetics (Goldstein and Schlötterer 1999). Compared with allozymes, microsatellites offer the advantage that, in principle, several thousand potentially polymorphic markers are available. Nevertheless, the application of microsatellites to population genetic questions requires a more detailed understanding of the mutation processes of microsatellite DNA as the evolutionary time frames covered in population genetics are often too long to allow novel microsatellite mutations to be ignored. Additional interest in the evolution of microsatellite DNA comes from the discovery that trinucleotide repeats, a special class of microsatellites, are involved in human neurodegenerative diseases (e.g., fragile X and Huntington's disease). A detailed understanding of the processes underlying microsatellite instability is therefore an important contribution toward a better understanding of these human neurodegenerative diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                23 August 2016
                2016
                : 4
                : e2366
                Affiliations
                [1 ]Department of Biology, Pennsylvania State University , University Park, PA, United States
                [2 ] Current affiliation: Department of Animal Biology, University of Illinois at Urbana-Champaign , Urbana, IL, United States
                Article
                2366
                10.7717/peerj.2366
                5012325
                27635334
                a5c02d6e-8680-4b3c-ac03-72ba7bf80fa4
                ©2016 Huang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 2 December 2015
                : 25 July 2016
                Funding
                Funded by: National Science Foundation
                Award ID: 209688, OCE 0117050, IOS-0843473
                Funded by: National Oceanic and Atmospheric Administration’s Office of Ocean Exploration and Research
                Funded by: Minerals Management Service
                Funded by: Gulf of Mexico Regional OCS office
                Award ID: 1435-01-96-CT30813, M05PC00018
                Funded by: NOAA National Undersea Research Program
                Funded by: Pennsylvania State University Eberly College of Science
                Funded by: Alfred P. Sloan scholarship
                National Science Foundation awards 209688 to DAC, OCE 0117050 to CRF and IOS-0843473 to Kenneth M. Halanych. National Oceanic and Atmospheric Administration’s Office of Ocean Exploration and Research, Minerals Management Service, Gulf of Mexico Regional OCS office, through contract No. 1435-01-96-CT30813 and subcontract M05PC00018 to CRF (TDI Brooks International Prime), as well as the NOAA National Undersea Research Program at the University of North Carolina, Wilmington, Pennsylvania State University Eberly College of Science award to CH and an Alfred P. Sloan scholarship to DAC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Conservation Biology
                Ecology
                Genetics
                Genomics
                Marine Biology

                deep sea,hydrocarbon seep,vestimentiferan tubeworm,siboglinid,microsatellite,population structure,gene flow

                Comments

                Comment on this article